
UniTerm® Payment Interface Application

UniTerm Integration and Deployment Guide

Revision: 8.0
Publication date August 17, 2015

Copyright © 2015 Main Street Softworks, Inc.

UniTerm Integration and Deployment Guide
Main Street Softworks, Inc.

Revision: 8.0

Publication date August 17, 2015
Copyright © 2015 Main Street Softworks, Inc.

Legal Notice

The information contained herein is provided As Is without warranty of any kind, express or implied, including but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. There is no warranty that the information or the use thereof does not infringe a
patent, trademark, copyright, or trade secret.

Main Street Softworks, Inc. shall not be liable for any direct, special, incidental, or consequential damages resulting from the use of any
information contained herein, whether resulting from breach of contract, breach of warranty, negligence, or otherwise, even if Main Street has
been advised of the possibility of such damages. Main Street reserves the right to make changes to the information contained herein at anytime
without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Main Street Softworks, Inc.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide iii

Table of Contents
1. Revision History .. 1
2. UniTerm System .. 2

2.1. Overview .. 2
2.2. UniTerm Architecture ... 2
2.3. Design Decisions .. 3

3. UniTerm Integration and Deployment Overview .. 4
3.1. Deployment .. 4
3.2. Versioning .. 4

3.2.1. Version Scheme ... 4
3.2.2. Wildcard Versioning ... 5

3.3. Licensing .. 5
3.3.1. Registration .. 5
3.3.2. Device Definition ... 5
3.3.3. Management .. 6

3.4. Starting UniTerm .. 6
3.4.1. Command Line Options .. 6

3.5. Multiple Instances ... 6
3.6. Swapping Devices ... 7
3.7. Configuration Files ... 7

3.7.1. Location .. 8
3.7.2. Parameters ... 8

3.8. Communication ... 9
3.8.1. Network Communication .. 9
3.8.2. Android Service Communication ... 9

3.9. Shutting Down UniTerm ... 10
3.10. Required User Permissions .. 10

4. UniTerm Protocol .. 11
4.1. Overview .. 11
4.2. UniTerm Request Parameters ... 11
4.3. UniTerm Response Parameters ... 15
4.4. UniTerm Error Codes .. 16

5. EMV transactions with UniTerm .. 18
5.1. Transaction Flow and Prompting .. 18

5.1.1. Swipe prompts to insert .. 18
5.1.2. Tap prompts to insert .. 18
5.1.3. Insert prompts to swipe ... 18
5.1.4. PIN required on Credit Cards .. 19
5.1.5. Signature not requested ... 19
5.1.6. Tap transaction run as MSR on chip card, no insert requested 19
5.1.7. Immediate decline without contacting the processor 19

5.2. Common questions .. 19
5.2.1. How do I add a gratuity/tip to a transaction? .. 19

6. UniTerm Protocol Examples ... 21
6.1. EMV Transaction [device load] ... 21

6.1.1. Uniterm Request Data ... 21
6.1.2. Uniterm Response Data .. 21

UniTerm Integration
and Deployment Guide

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide iv

6.2. EMV Transaction [Interac] .. 22
6.2.1. Uniterm Request Data ... 22
6.2.2. Uniterm Response Data .. 22

6.3. Pin Debit (forced) Transaction Request .. 23
6.3.1. Uniterm Request Data ... 23
6.3.2. GUI output ... 24
6.3.3. Uniterm Response Data .. 24

7. UniTerm Test Application .. 25
8. UniTerm Code Examples ... 26
9. UniTerm Point of Interaction Devices ... 27

9.1. Supported POI Devices ... 27
9.1.1. Ingenico RBA information .. 28
9.1.2. Verifone VX XPI information .. 30
9.1.3. Ingenico CPX/uCPX information .. 31

10. Certifications and Device Configurations ... 32
10.1. Certification List ... 32
10.2. Configuration Definitions ... 33

A. UniTerm Device Loading .. 35
B. EMV Receipt Requirements ... 37

B.1. Receipt content ... 37
B.1.1. Base receipt content ... 37

B.2. Receipt Data Returned by UniTerm ... 38
B.3. Receipt Data NOT Returned by UniTerm ... 41
B.4. Signature Line Requirements ... 42
B.5. Merchant vs Customer Copy ... 42
B.6. Moneris Requirements .. 43
B.7. Receipt Examples ... 43

B.7.1. EMV Insert, Signature Required ... 43
B.7.2. EMV Insert, PIN Verified .. 46
B.7.3. EMV Insert, No CVM .. 48
B.7.4. EMV Insert, Card Decline .. 50
B.7.5. EMV Insert, Card Removed (Decline) ... 52
B.7.6. EMV Insert, Interac ... 53
B.7.7. EMV Contactless, Interac Flash Decline .. 55
B.7.8. EMV Contactless, Decline .. 57

C. UniTerm Code Examples ... 59
C.1. Microsoft C# using libmonetra .. 59
C.2. Microsoft C# using XML and HttpWebRequest ... 63
C.3. Java using libmonetra ... 68
C.4. PHP using libmonetra ... 73
C.5. Microsoft VB.Net using libmonetra ... 77
C.6. Microsoft VBScript using XML and MSXML2 ... 82
C.7. Microsoft Visual Basic 6 using libmonetra ... 86

D. PCI Security and Implementation ... 91

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 1

1 Revision History

Version Date Changes

v8.0.0 2015-08-17 • Initial revision

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 2

2 UniTerm System

2.1. Overview .. 2
2.2. UniTerm Architecture ... 2
2.3. Design Decisions .. 3

2.1 Overview

Uniterm securely handles sensitive cardholder data independent of the merchants application
software. In addition, UniTerm provides a simple consistent interface to multiple payment
acceptance devices such as card readers, pinpads and terminals.

2.2 UniTerm Architecture

The UniTerm module is accessed via its 'Transaction Request' mode, as described below:

A Point of sale application calls UniTerm for txnrequest (such as a sale
transaction request) and includes basic information such as the amount of the sale
and an order-number.

B UniTerm communicates with devices (such as pinpads and card readers) to
retrieve sensitive data, depending on request type (step A).

UniTerm System

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 3

C UniTerm sends the full transaction data-set to the Monetra server for further
processing.

D The Monetra server processes the transaction request (such as a sale) against the
appropriate end point (for example TSYS) and then sends back the response it
receives to the UniTerm module.

E The UniTerm module then returns the transaction response back to the calling
application.

2.3 Design Decisions

UniTerm is designed to run as an independent application running in a separate address space
from any integrated applications. The design decisions behind this are due to the PCI PA-
DSS and EMV certification requirements. If UniTerm was designed as a library rather than
a separate application, it would be considered part of the integrator's application. This would
mandate that integrators validate to PCI PA-DSS as well as go through direct end-to-end EMV
brand certifications.

UniTerm's goal is to assist integrators in avoiding the costly and time consuming validations
and certifications. While it would have been easier to implement as a library, and easier for
integrators to use if it was a library, we strongly believe that the benefits far outweigh the
integration and deployment inconveniences.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 4

3 UniTerm Integration and Deployment Overview

3.1. Deployment .. 4
3.2. Versioning .. 4

3.2.1. Version Scheme ... 4
3.2.2. Wildcard Versioning ... 5

3.3. Licensing .. 5
3.3.1. Registration .. 5
3.3.2. Device Definition ... 5
3.3.3. Management .. 6

3.4. Starting UniTerm .. 6
3.4.1. Command Line Options .. 6

3.5. Multiple Instances ... 6
3.6. Swapping Devices ... 7
3.7. Configuration Files ... 7

3.7.1. Location .. 8
3.7.2. Parameters ... 8

3.8. Communication ... 9
3.8.1. Network Communication .. 9
3.8.2. Android Service Communication ... 9

3.9. Shutting Down UniTerm ... 10
3.10. Required User Permissions .. 10

3.1 Deployment

For Desktop deployments, Uniterm should be bundled and distributed with the POS system.

Provided to each integrator is a license for UniTerm that is installed via the Monetra Installer,
however, production deployments will not use this distribution mechanism. Instead, integrators
should package the directory that is created after installation to distribute with their own
package (e.g. POS). The UniTerm directory is self-contained and can be relocated to any path
the integrator sees fit without any additional system dependencies as long as the paths for any
sub-directories included with the UniTerm installation (if applicable) are kept in the same
relative paths in relation to the UniTerm executable.

For Android deployments, Uniterm is available as a standalone APK package. It can also be
bundled with the POS system, please contact us for guidance on bundling.

3.2 Versioning

3.2.1 Version Scheme

The versioning scheme employed by UniTerm is formatted as X.Y.Z, where each X, Y, and
Z components are numeric-only version indicators separated by a period. Each numeric
component may be from one to three digits in length. All software distribution updates will
result in at least one of the components being updated.

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 5

The X component of the version indicates the product major version number. The major
version component only changes when there are significant feature changes, or the changes
impact any part of a security standard, such as PCI PA-DSS.

The Y component of the version indicates a product minor version change. The minor version
will change when there are minor feature enhancements that do not impact the part of any
security standard such as PCI PA-DSS.

The Z component of the version indicates a bug-fix release. Bug-fix releases do not change the
overall feature-set or functionality of UniTerm, but may include security related fixes such as
updates to 3rd party libraries (e.g. cryptographic libraries) distributed with UniTerm.

3.2.2 Wildcard Versioning

PCI PA-DSS requires a specific wildcard versioning definition which corresponds to the
release which is being validated for compliance. With this release of UniTerm, the official
wildcard versioning is 8.Y.Z. The major (X) version number component is fixed at 8, which
as per the versioning definition states there will be no major feature changes or changes which
impact the PCI PA-DSS standard (e.g. all changes that do not affect the major version number
are classified as "no impact" changes). The minor (Y) and bug-fix (Z) wildcard components
comply with the descriptions in the previous section.

Any future change which results in a change to the major version number will have a
corresponding PCI PA-DSS validation.

3.3 Licensing

All Uniterm licensing is managed at the server level by the Monetra system with which
Uniterm is connected. Since licensing is administered at the server level, there is nothing
unique that needs to be deployed with Uniterm on the client side (such as a license or
certificate file).

3.3.1 Registration

Uniterm generates unique ids for each connected device in order to send to Monetra to track
the number of UniTerm licenses in use.

When Uniterm is started, during the first transaction and every 24hrs thereafter, the unique
device ID will be automatically registered with Monetra. If this device is already associated
with a UniTerm license, the license meta-data will be updated. If the device is not currently
associated with a UniTerm license, Monetra will register this unique device id if a UniTerm
license slot is available, otherwise Monetra will reject the registration request and Uniterm will
cancel the transaction.

3.3.2 Device Definition

A device is either a physical Point of Interaction device, or a Graphical User Interface of the
computer in which Uniterm is running.

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 6

Each physical device will consume a UniTerm license, the license is tied to the device serial
number. Since the license is tied to the device, the physical device may be transferred to
different POS stations without consuming additional licensing.

The use of the GUI mode in Uniterm, whether used with keyboard emulation card readers, for
acceptance of manually keyed card entry, or even simply used for Clerk status feedback, will
also consume a UniTerm license.

3.3.3 Management

Since UniTerm licensing is managed at the Monetra server, all license administration (view
licenses, delete licenses, etc) can be performed using either the Monetra Administrator GUI
or via the Monetra API. To more easily help identify and manage licenses, additional data is
available in the license list such as: initial creation timestamp, last used timestamp, last used
username, device type, and device serial number.

Note: If a UniTerm license (device or GUI) is removed (de-registered) from Monetra, then the
license slot is not eligible to be re-used for 7 days. However, if the same [deleted] device is
re-presented, it can immediately re-consume the license slot.

3.4 Starting UniTerm

For Desktop based deployments, the UniTerm module must be launched by the POS
application software and should not be started at startup. If the POS system does not start
Uniterm, then it is possible Uniterm will not be able to obtain screen focus for on-screen
prompts.

For Android deployments, Uniterm should be automatically started at Boot, and simply
Binding to the already-running service is sufficient.

3.4.1 Command Line Options

When starting UniTerm for Desktop based deployments, there are a few command line options
supported that control the behavior.

• -c - Full path to the ini file to read. If not specified, it searches for the uniterm.ini in
the paths documented in Section 3.7.

• -p - Port for UniTerm to listen on for incoming connections. If not specified, the value in
the ini file is used. The purpose of this configuration value is to aid in the ability to start
multiple UniTerm instances on the same machine with the intention of using GUI mode for
multiple user logins (e.g. Terminal Services).

• -h - Help options are displayed.

3.5 Multiple Instances

When running UniTerm in conjunction with Citrix or Terminal Services, with the intention
of using GUI mode, it is necessary to start multiple instances of UniTerm on the same

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 7

machine. This can be accomplished by using a different port for each UniTerm instance.
The port can either be configured via the command line options or by specifying a different
UniTerm ini file. The integrated application would then communicate with UniTerm on its
own dedicated port to prevent interference with any other UniTerm instances. The dedicated
UniTerm instance must still be started by the POS application in that user instance otherwise
UniTerm will be unable to display information or prompts.

If using UniTerm in device-only mode, it is recommended to use only a single instance of
UniTerm and not start multiple instances. UniTerm is designed to be able to handle multiple
transactions across multiple devices without the need for additional instances.

3.6 Swapping Devices

From time to time it may be necessary to swap out devices, whether the device is
malfunctioning, being updated to a new firmware load, or simply being relocated. When
a device is swapped, UniTerm needs to be made aware of this, otherwise there could be
unexpected behavior. In order to reduce transaction latency as much as possible, the first
time a device is used after a fresh UniTerm start, UniTerm performs many queries against the
device which may take many seconds to complete. These queries gather device information
such as its type and capabilities and ensure the proper configuration parameters are loaded.
In extreme cases this first transaction may detect a full device load is necessary which could
extend this time to many minutes and result in a device reboot. On all subsequent transactions,
these initial steps are stored in an in-memory cache and will not be repeated unless UniTerm
is explicitly told to do so. When a device is swapped out, UniTerm may have no way to know
this has occurred since it is operating on this cached data.

In order to tell UniTerm that a device has been swapped out, simply send a
u_action=deviceload request or restart UniTerm. Either of these actions will force
UniTerm to clear its in-memory cache and connect to the device as if it was the first
transaction.

In some cases if the device itself isn't swapped (so the serial number has not changed), but
instead the device has been manually cleared, such as when performing a firmware update,
additional steps may need to be taken to ensure EMV parameters are loaded. There may be
no way for UniTerm to determine if the device has the latest EMV parameters so UniTerm
caches the loadid associated with the device serial number in the uniterm.ini. If this on-
disk cache is incorrect because the device was manipulated outside of UniTerm, UniTerm must
be informed of this by passing u_forceload=yes with the u_action=deviceload request.
The u_forceload will tell UniTerm to ignore the loadid cache forcibly loading the EMV
parameters into the device. In fact, it may be prudent to explicitly use u_forceload any time
a device is swapped to ensure all data is loaded into the device.

3.7 Configuration Files

There is a single configuration file named uniterm.ini that must be configured before
Uniterm can be used. The uniterm.ini MUST be readable and writable by the Uniterm
process.

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 8

3.7.1 Location

The location of the uniterm.ini may vary from system to system, and the default search
paths, listed in priority order, are:

• Windows:
• %APPDATA%/Uniterm/uniterm.ini

• same path as the monetra_uniterm.exe executable
• Mac OS X:

• ~/Library/Application Support/Uniterm/uniterm.ini

• Linux/Unix:
• ~/.uniterm/uniterm.ini

• same path as the monetra_uniterm executable

Note: If the uniterm.ini cannot be located, or does not have proper read and write
access, UniTerm will still start listening on the default port 8123 and return an INI related
u_errorcode on all requests with a description of the issue. It should be noted that once
the error has been corrected, UniTerm must be restarted to clear the error condition to force
UniTerm to re-read its INI file.

3.7.2 Parameters

The parameters in this section are in standard ini format grouped by sections. Sections are
in the format of "[section]". The settings for each section are in key/value pair format of
"key=value".

Under the [monetra] section:

• host: Required. Hostname/address where Monetra resides
• port: Required. Port to connect to Monetra on

Under the [uniterm] section:

• port: Required if using SSL. Port to listen on for incoming connections.
• sharedsecret: Optional. The value specified is the shared secret to use for the

communication protocol. A value must be set if one wishes to allow remote connections
(along with localonly=no), or to enable the MODIFYCONFIG command. When this
configuration parameter is set, all requests to UniTerm must include the u_sharedsecret
protocol-level key/value pair set to the same value.

• localonly: Optional. If not specified, defaults to yes. If set to no, a sharedsecret must
also be set and remote connections will be allowed.

• ssl_cert: Optional. If not specified attempts to locate ssl.crt in the same path as
uniterm.ini

• ssl_key: Optional. If not specified attempts to locate ssl.key in the same path as
uniterm.ini

• ssl_enabed: Optional. Can only be disabled on Android (where the default is no), other
systems SSL is always enabled

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 9

• idle_message: Optional. Set the default idle message displayed on any device when
not processing a transaction. This can be overwritten on a per-device level using the
u_deviceidlemessage parameter in the protocol. This is not supported on all devices.

• unsupportedcard: Optional. If not specified, defaults to no. If set to yes, this allows
trackdata to be returned to the caller for txnrequest and cardrequest only when the
card type is confirmed to be non-financial. This is to allow in-store private-label gift (on
txnrequest) as well as manager cards. The card must be returned unencrypted from the
reader to be supported.

• nosigfloor: Optional. If not specified, defaults to disabled, should be specified as a dollar
amount. This configuration value is a temporary stop-gap until Monetra supports advertising
a merchant's desired floor limit for requiring signatures and will be removed in the future.
This only applies to Swiped transactions as EMV follows chip-specific rules. For instance if
the value is set to 50.00, and a 40.00 authorization is attempted as a swipe transaction, they
will NOT be prompted to sign, however a 60.00 authorization would be prompted to sign.

3.8 Communication

The communication protocol for Uniterm is very similar to that of Monetra. At the heart of
the protocol is a simple key/value pair message structure, very similar to the Monetra Client
Interface Protocol Specification. In fact, some of these key/value pairs sent to Uniterm are
simply passed-through to Monetra for processing.

When communicating with Uniterm, you use standard network communications, except
on Android where you have the option to use Service-based communication (network-
communication is available as a configurable option).

3.8.1 Network Communication

Uniterm supports both raw SSL communication with key/value pair transport, or XML over
HTTPS. The protocol being used is autodetected by Uniterm on the first message sent by the
POS. The standard APIs used with Monetra are also able to be used with Uniterm as they
simply facilitate the same key/value pair transport mechanisms as the raw protocols. For
more information on the underlying communications protocols or APIs, please reference the
communications documentation and API documentation for Monetra.

Normally, Uniterm listens on localhost (127.0.0.1) via IPv4 on port 8123. It is recommended
to use the ip address rather than 'localhost' since some operating systems may not fall
back to trying IPv4. However, it is possible to make Uniterm accept connections from
remote machines by configuring a 'sharedsecret=' set to a desired value as well as
'localonly=no' in the uniterm.ini. When a shared secret is configured, all requests to
Uniterm must include the shared secret in order to prevent malicious requests.

3.8.2 Android Service Communication

The Android Service communication option utilizes AIDL in order to transmit the key/value
pairs for each request to the Uniterm Service. Please see our Android SDK for an example of
how to utilize this communication option.

UniTerm Integration and
Deployment Overview

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 10

3.9 Shutting Down UniTerm

Uniterm should only be shut down if it was started by the POS, and does not apply to Android
systems. On Windows, a standard Window shutdown message may be sent, or on Unix a
SIGTERM signal may be sent to the Uniterm process. Or universally Uniterm supports a
shutdown message via its protocol.

3.10 Required User Permissions

The Monetra user identified by the username must be a Monetra SUB-USER with the
obscure_sensitive_data flag set. For pass-through operations the subuser must have
additional permissions for the transaction types it will perform (such as 'sale').

Uniterm also requires these permissions to operate:

• CHKPWD

• MERCHINFO

• GETPERMS

• SALE

• VOID

• REVERSAL

• IMAGEADD

• TERMLOAD - EMV or INTERAC ONLY
• EMVCOMPLETE - EMV ONLY
• INTERACMAC - Canadian Interac Debit Only

More permissions may be required based on the POS operations supported.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 11

4 UniTerm Protocol
4.1. Overview .. 11
4.2. UniTerm Request Parameters ... 11
4.3. UniTerm Response Parameters ... 15
4.4. UniTerm Error Codes .. 16

4.1 Overview

Application software communicates with the UniTerm module via the UniTerm protocol
(which is similar to the Monetra Client Interface Protocol).

4.2 UniTerm Request Parameters

The table below describes the parameters used within the UniTerm protocol.

PARAMETER VALUE

username The Monetra username to authenticate as. For security reasons
this should be a restricted subuser account.

password The Monetra password associated with username.

u_action DEVICELOAD. Load a device with EMV and/or Interac
parameters. This request will start a terminal download
of EMV and/or Interac parameters to load into the device
being used. Requires username, password, u_device,
and u_devicetype parameters. If the load for the device
is identical to the previous load, the load will be skipped.
Please note this process may take up to 3 or 4 minutes
depending on the processing institution being used and the
device being used. The Device may also reboot during this
process. It is strongly recommended to call this function
when a lane opens, however if it is not called, it will
automatically be performed prior to the first transaction.
If the device or merchant account does not support EMV
or Interac, this command will simply return success.
Optionally u_deviceidlemessage may be passed to this
as well to set the device's default message if supported by
the device.

TXNREQUEST Transaction Request. Sensitive data
(trackdata, account, cvv, avs, pin) will be retrieved by the
UniTerm module either via the GUI or via a card entry
device and forwarded to the Monetra server.

CARDREQUEST Non-Financial Card Entry Request.
UniTerm will prompt for card entry, and if it is determined
the card is non-financial, it will return the card data. This
can be used for manager cards and private label gift cards

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 12

that are not processed through Monetra. The card must be
swiped, and the reader must be configured to return the card
in unencrypted form.

PASSTHROUGH This action performs a direct pass-through
of parameters to the Monetra server. Only the username,
password, and u_action parameters are required. Can be
used for reports, etc.

CANCEL Will attempt to cancel an outstanding
TXNREQUEST. Requires 'username', 'password' and
'u_id' fields which must match the pending request.
If the transaction cannot be canceled, such as if it is
ineligible (such as when waiting on a response from
the Monetra server), or the device doesn't support
canceling the outstanding request, u_errorcode will return
PENDING_TRAN.

DEVICETYPES Will return a comma separated list of device
types supported by the UniTerm module. No authentication
required.

Headers:
• devicetype - internal device name
• manufacturer - textual description of device

manufacturer
• model - textual description of model
• connectivity - pipe separated list of connectivity

methods supported by the device, e.g. SERIAL|USB|
BLUETOOTH|IP

• functionality - pipe separated list of functionality
supported by the device:

e.g. SIGNATURE|SWIPE|RESET|IDLE|REQKEY|
REQPIN

STATUS Requests the current status of a pending
TXNREQUEST. Requires 'username', 'password' and 'u_id'
fields which must match the pending request. This will
provide a textual verbiage response suitable for clerk
display.

SERIALLIST Will return a comma separated list of all
serial ports enumerated on the system. No authentication
required.

Headers:
• port - The port path
• desc - Description of port, if applicable

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 13

BLUETOOTHLIST List all 'bluetooth' devices that have been
paired with the machine UniTerm is running on. The device
may or may not be present. Currently only supported on
Android.

Headers:
• name - The textual name of the device as registered with

the operating system.
• mac - The device bluetooth MAC address
• uuid - The device bluetooth UUID

USBLIST List all supported USB devices that are currently
attached to the machine UniTerm is running on.

Headers:
• nickname - The devicetype (device internal name)

associated with the USB entry
• devpath - The device path of the USB device (windows

only)
• bus - The USB bus (linux only)
• addr - The USB address (linux only)
• vendorID - The USB vendor id
• productID - The USB product id
• serial_number - The device serial number (if

provided)

SHUTDOWN Terminates execution of the UniTerm module.
This should be called when the application software
terminates.

MODIFYCONFIG Allows a select number of ini
configuration settings to be set via the API. In order to
activate the ability to use this feature, an integrator must
enable the shared secret in the configuration and the
connection must come from the local machine.

VERSION Requests the current version of UniTerm. The
version information is output in human-readable format in
the verbiage response field. The version information also
contains the build number.

u_flags Txnrequest and Cardrequest only. Multiple flags may be
sent per data ticket request. All flags are separated by a pipe (|)
symbol.

• ENCRYPTEDONLY - Permit encrypted reader data only. Not
valid on cardrequest

• DEVICEONLY - Suppresses display of clerk facing dialog.
For instance, on a swipe request, no swipe dialog would
be presented. Important note: keyboard emulation readers

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 14

are not supported with this flag, only serial, USB HID,
and Bluetooth devices can work. On Android, this flag is
automatically implied due to the fact that it does not support
a GUI mode of operation.

• KEY - Perform capture of manually keyed data. Not valid on
cardrequest

• AVS - Request AVS data. Only allowed on keyed
transactions.

• CVV - Request for CVV data. Only allowed on keyed
transactions.

u_cardclass Txnrequest only. Optional. The card class that is expected
(this provides a hint much like flags) to enforce only this card
classification be allowed. Uniterm will normally prompt for
the card type from the cardholder if it can not be determined
based on the card presented. This option can be useful if the
POS has already determined the card type prior to requesting
Uniterm to process a transactions. If a card is presented that
does not match the card class, the transaction will be rejected.
Supported classes are:

• CREDIT - Credit card transaction
• DEBIT - DEBIT card transaction
• EBT - Electronic Benefits transaction
• INTERAC - Canadian Interac card transaction
• GIFT - Gift card transaction

u_device Txnrequest, Cardrequest, and DeviceLoad only. This
specifies the path of the card entry device. Required parameter
unless performing a GUI-based action (such as manual keyed
entry, or swiping via a keyboard emulation card reader).
Required if u_devicetype is provided.

• USB

• SER:port - Serial

• BT:mac,[uuid] - Bluetooth

• IP:ipaddr:port - IP

u_devicetype Txnrequest, Cardrequest, and DeviceLoad only. The
unique device type supported by Uniterm as found via a
devicelist request. Required if u_device is provided.

u_language Txnrequest only. Used to override terminal defaults for
display of text prompts. Current choices are "en" or fr".

u_currency Txnrequest only. The numeric ISO currency code for EMV
transactions (e.g. 840 for USD, 124 for CAD). Defaults to
the terminals configured currency. This parameter is used to
override the terminals default currency.

u_deviceidlemessage Txnrequest or deviceload only. Sets a message that the
terminal should display when idle, this will be persistently

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 15

cached by Uniterm and associated with the device serial
number.

u_forceload deviceload only. Values allowed are yes, no, and full. If
not specified defaults to no. A value of yes will force a reload
of all EMV parameters even if UniTerm believes the device
already has the latest set of parameters. A value of full will
additionally force reloading of all other objects UniTerm
maintains, including but not limited to, configuration values,
forms, and images.

u_id Txnrequest, Cardrequest, Status, and Cancel only.
A unique id (generated by the calling application) that
identifies the transaction. This is used for checking the status
or canceling the transaction. Without this id the transaction
state cannot be queried.

amount Txnrequest only. Transaction amount. Required.

u_sharedsecret Required on all transactions if a shared secret is set in the ini
file.

monetra/host Modifyconfig only. Modify the [monetra] host
configuration value.

monetra/port Modifyconfig only. Modify the [monetra] port
configuration value.

uniterm/idle_message Modifyconfig only. Modify the [uniterm]
idle_message configuration value.

4.3 UniTerm Response Parameters

The UniTerm module will return all standard response tags from the Monetra server such
as code=, cardtype=, and so on. The additional tags listed below are for transaction flow
handling, please see the EMV Receipt section for additional tags that may be returned specific
to receipt formatting.

PARAMETER VALUE

u_emv_chip_malfunction (yes or not sent) = Indicates that there was a chip
malfunction during EMV Complete. Note: Certain card
brands require a note on the receipt stating there was a
chip malfunction.

u_need_signature (yes or not sent) = Monetra returns rcpt_emv_cvm which
can have a value of "sig" saying sig is required. The
u_need_signature means that a signature is required and
it should be printed/obtained from the paper receipt. If
an EMV requires a signature and one was not captured
electronically, this flag indicates it should be obtained via
a paper receipt.

u_errorcode See section below.

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 16

u_cancelable u_action=status only. Yes or No. Indicates if the
current transaction state will allow a cancel to be sent.
This is useful for showing and hiding a cancel button
within an integration's GUI.

trackdata u_action is txnrequest or cardrequest
only. Also requires the ini configuration of
unsupportedcard=yes. Will only be returned for
non-financial cards that are returned unencrypted from
the reader. Facilitates the use of manager cards as well
as in-store private label gift systems that do not flow
through Monetra. The u_errorcode returned with the
response will always be NONFINANCIAL. Support during
a txnrequest is tailored to the use of private label gift
cards and will only be returned when the cardholder
selects GIFT from the payment type selection screen.

4.4 UniTerm Error Codes

Errors will be returned in the u_errorcode field. Each error code may be used for more
than one error type. Please see the verbiage response for more details. Note: On a successful
transaction the u_errorcode will be set to SUCCESS but that only indicates communications
with the Monetra server were successful. It does not mean the transaction was approved.

u_errorcode definition

MISSING_PARAM A required parameter was missing.

INVALID_PARAM A specified parameter was invalid

PENDING_TRAN pending transaction already in progress

INVALID_USE Typically means parameters specified should not have been
specified together.

PERMISSION_ERROR The user account within Monetra was misconfigured.

MONETRA_ERROR There was an error communicating with Monetra.

DEVICE_ERROR There was an error communicating with the card entry device.

CANCELED User canceled request

FAILURE Generic Failure

DEVICE_INUSE The device specified is being used by another transaction.

BAD_READ The device returned a card read error.

MAC_FAILURE The transaction was rejected because the MAC returned from the
processor did not match the expected value.

EMV_CARD_DENY The card locally declined the transaction.

EMV_CARD_REMOVED The card was removed before the end of the transaction.

CARD_NOT_SUPPORTED The card presented was not supported.

DEVICE_NOT_LOADED The device needs to be loaded before it can run EMV transactions.

UniTerm Protocol

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 17

FALLBACK_NOTALLOWED There was an error reading the chip and the card brand rule does
not allow the card to be re-presented via another means.

INI_CANNOT_FIND The uniterm.ini could not be found.

INI_CANNOT_READ The uniterm.ini is not readable by the Uniterm process.

INI_CANNOT_WRITE The uniterm.ini is not writable by the Uniterm process.

INI_INVALID_PARAM The uniterm.ini has an invalid configuration parameter.

NONFINANCIAL The card presented is not a financial card. This code will be
returned when requesting and returning trackdata for non-financial
cards when the configuration of unsupportedcard=yes is set.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 18

5 EMV transactions with UniTerm

5.1. Transaction Flow and Prompting .. 18
5.1.1. Swipe prompts to insert .. 18
5.1.2. Tap prompts to insert .. 18
5.1.3. Insert prompts to swipe ... 18
5.1.4. PIN required on Credit Cards .. 19
5.1.5. Signature not requested ... 19
5.1.6. Tap transaction run as MSR on chip card, no insert requested 19
5.1.7. Immediate decline without contacting the processor .. 19

5.2. Common questions .. 19
5.2.1. How do I add a gratuity/tip to a transaction? .. 19

EMV transactions, by nature, are much more complex than traditional magnetic stripe
transactions. Uniterm hides this complexity from the application software. In the case of
magnetic stripe and EMV transaction, the application software will send the request to
Uniterm. The device capabilities (EMV for example) will be determined by Uniterm, along
with the merchant account configuration. From these Uniterm will handle the appropriate
prompting and flow aspects related to the determined capabilities. The application software
simply needs to sent a u_action=TXNREQUEST and let Uniterm handle the rest.

5.1 Transaction Flow and Prompting

Integrators unfamiliar with EMV may notice some specific flow cases that seem counter-
intuitive at first. This section is meant to address these EMV-specific cases.

5.1.1 Swipe prompts to insert

If a chip-enabled card is swiped on an EMV-capable terminal, it is mandated that the user be
prompted to insert the card. This is an EMV certification requirement which cannot be lifted
and it is meant to train consumers to insert their cards and to prevent fraud.

5.1.2 Tap prompts to insert

There are certain thresholds negotiated between the card and terminal which may request a
chip-enabled card that is presented as a tap transaction be inserted instead. When this occurs,
it can be due to a number of factors including fraud mitigation, or the card has determined
it needs to be updated (for insert transactions, an issuer can choose to return issuer scripts to
remotely reprogram cards).

5.1.3 Insert prompts to swipe

If a chip-enabled card is prompted to be swiped, this is usually an indication that there was
a chip malfunction and the cardholder should have their card replaced, called a technical
fallback. It is expected at some point in the future, technical fallback will be disallowed due to

EMV transactions with UniTerm

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 19

fraud concerns. The other possibility is if the application id in use by the card is not supported
by the terminal.

5.1.4 PIN required on Credit Cards

The cardholder verification method is negotiated between the card and the terminal. If both
the card and terminal support PIN entry, it may be chosen as the desired verification method.
Consumers in the US may not expect to enter a PIN on their credit cards, but it is common
among foreign cards.

5.1.5 Signature not requested

The cardholder verification method is negotiated between the card and the terminal. They may
negotiate Signature, PIN, or what is called NoCVM which means no cardholder verification is
required for the transaction. The decision is strictly made based on the terminal capabilities
and card capabilities.

5.1.6 Tap transaction run as MSR on chip card, no insert requested

It is a requirement by the card brands that if a chip-capable card is presented as a tap that the
card NOT be prompted for insertion. This can happen due to a terminal not being configured
for contactless EMV support, or if a chip is malfunctioning.

5.1.7 Immediate decline without contacting the processor

EMV cards have the ability to make decisions about the transaction before it is even processed.
From time to time a merchant may see a chip card presented that results in an immediate
decline before requesting cardholder verification or connecting to a processing institution. This
could happen because the card has exceeded some internal threshold, or the card has received a
remote script on a previous transaction to explicitly block transactions, such as a card block or
application block.

5.2 Common questions

5.2.1 How do I add a gratuity/tip to a transaction?

Tips are added to EMV authorizations just as they are with MSR authorizations, nothing has
changed in the US rules. An integrator will simply send a preauth with the order amount,
then when the tip amount is known, a preauthcomplete will be sent with the final order
amount and examount will contain the tip amount. However, if the tip is greater than 20%,
merchants should obtain a new authorization for the tip according to the card brand rules. Of
course if the tip amount is known prior to the authorization, the tip amount should be included
a part of the authorization request.

There is much confusion regarding tips in the US market with the introduction of EMV Chip
and Pin, most of this is due to European rules which state the gratuity amount must be sent
with the initial authorization request. This does NOT apply to the US market.

EMV transactions with UniTerm

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 20

Please refer to the below card brand documentation for more information:

• http://www.mastercard.com/us/merchant/pdf/TPR-Entire_Manual_public.pdf (page 70)
• http://usa.visa.com/download/merchants/play-it-smart-with-chip-payment-transactions.pdf

(page 3)

http://www.mastercard.com/us/merchant/pdf/TPR-Entire_Manual_public.pdf
http://usa.visa.com/download/merchants/play-it-smart-with-chip-payment-transactions.pdf

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 21

6 UniTerm Protocol Examples

6.1. EMV Transaction [device load] ... 21
6.1.1. Uniterm Request Data ... 21
6.1.2. Uniterm Response Data .. 21

6.2. EMV Transaction [Interac] .. 22
6.2.1. Uniterm Request Data ... 22
6.2.2. Uniterm Response Data .. 22

6.3. Pin Debit (forced) Transaction Request .. 23
6.3.1. Uniterm Request Data ... 23
6.3.2. GUI output ... 24
6.3.3. Uniterm Response Data .. 24

Several examples are provided below which describe how to use the UniTerm protocol.

6.1 EMV Transaction [device load]

6.1.1 Uniterm Request Data

PARAMETER VALUE

password test123

u_action deviceload

u_device USB

u_deviceidlemessage WELCOME

u_devicetype ingenico_cpx

u_flags DEVICEONLY

u_id 1182112391

username moneris_ipp320x:sub

6.1.2 Uniterm Response Data

PARAMETER VALUE

addltermcaps F000F0F001

addltermcaps_desired 6000F0F001

addltermcaps_loa F000F0A001

altered_termload yes

code AUTH

loa_id 3C

termcaps E0B8C8

termcaps_desired E0B8C8

UniTerm Protocol Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 22

termcaps_loa E0B8C8

termtype 22

termtype_desired 21

u_errorcode SUCCESS

verbiage Device loaded

6.2 EMV Transaction [Interac]

6.2.1 Uniterm Request Data

PARAMETER VALUE

action sale

amount 1.00

nsf yes

ordernum 899065992

password test123

u_action txnrequest

u_device USB

u_deviceidlemessage WELCOME

u_devicetype ingenico_cpx

u_flags DEVICEONLY

u_id 899065992

username moneris_ipp320x:sub

6.2.2 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXXXXXX2145

auth 221093

batch 1

cardholdername Test Card 14

cardtype INTERAC

code AUTH

item 793

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

UniTerm Protocol Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 23

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_acct_type checking

rcpt_custom refnum:660136000010017930

rcpt_emv_ac 882D8427A268E214

rcpt_emv_actype TC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm pin

rcpt_emv_name Interac

rcpt_emv_tsi 7800

rcpt_emv_tvr 8000008000

rcpt_entry_mode C

rcpt_host_ts 072315151022

rcpt_issuer_resp_code 00

rcpt_resp_code 001

timestamp 1437678622

ttid 992

u_errorcode SUCCESS

6.3 Pin Debit (forced) Transaction Request

6.3.1 Uniterm Request Data

PARAMETER VALUE

action sale

amount 1.00

nsf yes

ordernum 899065992

password test123

u_action txnrequest

u_cardclass DEBIT

u_device USB

u_deviceidlemessage WELCOME

UniTerm Protocol Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 24

u_devicetype ingenico_rba

u_id 899065992

username transarmor_isc250:sub

6.3.2 GUI output

6.3.3 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0027

auth 412303

batch 15

cardtype MCDEBIT

code AUTH

item 139

merch_id 0993

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_entry_mode S

timestamp 1437678765

ttid 200

u_errorcode SUCCESS

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 25

7 UniTerm Test Application

Included with the UniTerm software distribution is a test application known as "Uniterm
Tester". This test application is a simple graphical user interface which may be used to test
the various functionality in UniTerm. This utility should be used by developers exploring the
functionality of Uniterm as it will provide the request and response messages from UniTerm
as well as generate sample receipts for each request. The test utility can be found in the same
directory as the monetra_uniterm executable named unitermtester.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 26

8 UniTerm Code Examples

Code examples are provided help you understand how easy it is to integrate your application
with the UniTerm middleware. Please see Appendix C for complete code examples.

Examples are provided for the following languages:

• Microsoft C# using libmonetra

• Microsoft C# using XML and HttpWebRequest

• Java using libmonetra

• PHP using libmonetra

• Microsoft VB.Net using libmonetra

• Microsoft VBScript using XML and MSXML2

• Microsoft Visual Basic 6 using libmonetra

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 27

9 UniTerm Point of Interaction Devices

9.1. Supported POI Devices ... 27
9.1.1. Ingenico RBA information ... 28
9.1.2. Verifone VX XPI information .. 30
9.1.3. Ingenico CPX/uCPX information .. 31

Card data is captured at the point of sale via a magnetic swipe reader or, in some cases (such
as for telephone-based transactions), by manual entry of the card number via a keyboard, touch
screen, or key pad. The device where card data is captured is called the Point of Interaction
(POI) device or also may be referred to as the "point of capture" or "point of entry" device.

Note: The UniTerm module supports both encrypting and non encrypting POI devices. Using
the UniTerm module with non encrypting devices can remove the application software (such
as a POS application) from scope for the PCI Payment Application (PA-DSS) standard. Using
encrypting POI devices can also reduce or eliminate PCI requirements for merchants.

9.1 Supported POI Devices

The table below describes POI devices currently supported. The column marked
ENCRYPTION indicates the type of encryption the device supports (if any). CardShield
encryption can be performed by a Monetra server while other types of encryption must be
preformed by the transaction processor. The column marked EMV are devices that UniTerm can
work with to perform EMV/Chip based transactions.

Note: UniTerm is currently only supporting devices which support EMV. This list may be
expanded in the future to support non-EMV devices. This list also does not include keyboard-
emulation devices (both encrypting and non-encrypting) which are supported when running in
GUI mode.

If you are using a previous version of Uniterm which supported additional non-EMV devices,
do not upgrade your version of Uniterm as those devices are not currently supported.

Model Device S/W u_devicetype Notes Encryption EMV

Ingenico

iPP320 CPX CPX ingenico_cpx Canada NONE x

iUP250 uCPX uCPX ingenico_ucpx Canada NONE x

Ingenico
RBA family
(iPP320, iSC
Touch 250,
etc)

RBA ingenico_rba USA CardShield, First
Data TransArmor

RSA

x

Verifone

vx805 XPI verifone_vx USA NONE x

UniTerm Point of
Interaction Devices

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 28

9.1.1 Ingenico RBA information

The minimum version of the RBA software load supported is v14 for running EMV
transactions. Any device in the Ingenico RBA family may be used.

The RBA family includes all Ingenico Telium2 devices that can run the RBA (Retail Base
Application) software version 14 or higher. This includes, but is not limited to:

• iCMP

• iPP320

• iPP350

• iSC Touch 250

• iSC Touch 350

• iSC Touch 480

9.1.1.1 Communication Methods

Uniterm supports communicating with RBA via these communication methods (given the
proper cables and add-on options from Ingenico):

• USB->Serial - Requires Telium or Jungo drivers on Windows, will show up as a virtual
COM port.

• Serial - 115200 8N1 - No flow control

• Bluetooth - Android only
• IP - server mode

9.1.1.2 Device configuration

RBA devices can be configured by entering the management menu during device boot in order
to set up the communication method. When a device is shipped to you, it can often be left in a
state which is not compatible with the cabling being used and must be reconfigured.

In order to reboot a device, you may either disconnect it from power, or use the reboot key
sequence. The key sequence is either the yellow CLEAR button plus the "*.,#" key or the "-"
key, depending on which device is being used.

While booting, wait until the RBA splash screen appears with the scroll bars and system
information. Then quickly press the management password, which by default is 2 6 3 4 and
then the green ENTER key. Follow the on-screen prompts.

The communication method configuration is available via TDA->Configuration-
>Communication.

9.1.1.3 Hardware Information

It is important to ensure the device being ordered is the latest hardware revision. Ingenico
often introduces newer revisions without changing the model number, however their Part
Numbers do in fact differ. The easiest way to request the most recent revision is to ensure you
are requesting the PCI PTS v3 or v4 version of the devices. Older hardware revisions comply

UniTerm Point of
Interaction Devices

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 29

with PCI PTS v2 and should not be used for new deployments as you may experience issues
due to limitations in the hardware.

Note: There have been recent reports of customers receiving iPP320 units that have been
sent out as PCI PTS v2 devices. These devices do NOT support RBA12 and higher, even
though they may come with an RBA12 or RBA13 firmware release. If you experience lockups
or unexpected behavior, please verify your device is a PCI PTS v3 or higher device.

9.1.1.4 Forms and Images

UniTerm depends on the stock forms and images that ship by default on terminals with RBA. In
addition, UniTerm does require a few UniTerm-specific forms and images to be available on
the device. These will be generated and uploaded automatically to the device if UniTerm can
not find them.

UniTerm will check if it has all the necessary forms on the first transaction run by a device. It
will then load any missing forms. When loading forms is required, a message is presented on
the device and there is an additional delay until the upload is complete.

It is possible for integrators to fully customize the look and feel of the forms displayed on the
device. Such integrators should contact Ingenico in order to obtain the necessary form building
tools, and information on how to upload custom forms and images onto the device. Integrators
should also contact their device distributor to ask about services to pre-load any files prior to
shipping devices to customers. The forms used and their requirements are listed below.

Forms and Images used by UniTerm:

• UTAD.K3Z - The form displayed when the device is idle, also known as the "ADs" screen.
This form may be customized to present an image or a series of rotating images, but must
not contain buttons. The default form loaded contains a single image, UTAD.PNG. It is
recommended that the images created be specific to the device for best appearance even
though the device will scale the image if too small or large.

• UTCCOD.K3Z - Form used for card entry / selection. The form loaded is the same as the
default Ingenico CCOD.K3Z form, with the exception that the cancelenabled='true'
attribute has been added to allow the cardholder to press the physical cancel button to exit
the request payment screen. Integrators wishing to modify this screen need to comply with
the capabilities of the stock form.

• UTCSEL.K3Z - Form used for tender selection (credit, debit, etc). The form loaded is
identical to the default Ingenico PAY1.K3Z form. It is duplicated due to an Ingenico
limitation that does not allow the use of the stock form when using the "on demand"
command mode. Integrators wishing to modify this form must comply with the capabilities
of the stock form, especially the mapping of the button names available (e.g. Bbtna - debit,
Bbtnb - credit, etc).

• MSG.K3Z - Form used to display single line messages. This is a stock form, any
replacements should adhere to the capabilities of the stock form.

• MSGTHICK.K3Z - Form used to display double line messages. This is a stock form, any
replacements should adhere to the capabilities of the stock form.

UniTerm Point of
Interaction Devices

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 30

• AMTV.K3Z - Form used to display confirmation prompts, both for arbitrary prompts
and amount confirmation. This is a stock form, any replacements should adhere to the
capabilities of the stock form.

• Ingenico may internally call additional forms during the EMV payment processing flow. For
information on how to customize these screens, integrators should contact Ingenico.

9.1.1.5 First Data TransArmor RSA Encryption

The Ingenico devices support First Data's TransArmor RSA encryption. TransArmor is First
Data's P2PE encryption solution along with tokenization which must be enabled on the account
both within First Data's systems as well as within Monetra. When configuring a Monetra
account for TransArmor encryption, set the Encryption merchant configuration value to
IngenicoRSA.

As part of the device loading procedure, a key request will be made to Monetra which will
request the current key to use from First Data's systems. Monetra will then send that key
identifier to takeys.monetra.com:443 to look for an available signed package to load onto
the Ingenico device. Due to limitations in the Ingenico TransArmor implementation it is not
possible to directly load the key from First Data's systems into the device. If the requested key
package is not yet available, the existing key will be continued to be used until which time the
updated package is made available.

TransArmor keys typically expire after 2 years, and new keys will be provided 90 days prior
to expiration. All terminals on a given merchant account will share the same RSA public key.

9.1.2 Verifone VX XPI information

The minimum version of the XPI software load supported is v8.23a for running EMV
transactions. Prior versions of XPI may work for non-EMV transactions, however this
functionality has not been extensively tested.

9.1.2.1 Communication Methods

Uniterm supports communicating with the Verifone VX via these communication methods
(given the proper cables and add-on options from Verifone):

• USB - Requires Vx USB Drivers available from www.verifone.com on Windows, will
show up as a virtual COM port.

• Serial (COM1) - 9600

When a device is shipped to you, it can often be left in a state which is not compatible with the
cabling being used and must be reconfigured.

9.1.2.2 Device configuration

During device boot-up, it is possible to change the connectivity setting to match the
cabling. When the XPI version is displayed during startup, press the alpha and 8 buttons

UniTerm Point of
Interaction Devices

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 31

simultaneously. You can then change the connectivity method by pressing the appropriate
F<n> key.

9.1.3 Ingenico CPX/uCPX information

Ingenico CPX (attended) and uCPX (unattended) software loads are supported for Canadian
merchants. These loads support both contact and contactless EMV processing for multiple card
brands including Interac debit cards. The required software versions are 10.14 for CPX and
02.02 for uCPX.

Note: The MasterCard PayPass v2.1 kernel must be loaded into the device if supporting
contactless MasterCard EMV. If the device is loaded with the PayPass v3.0 kernel, it will fail
to accept PayPass transactions. Due to limitations in the Ingenico software, it is impossible for
UniTerm to detect the version of the PayPass kernel in use, and the CPX and uCPX software
versions are not tied to any PayPass kernel version.

9.1.3.1 Communication Methods

Uniterm supports communicating with CPX/uCPX via these communication methods (given
the proper cables and add-on options from Ingenico):

• USB->Serial - Requires Telium or Jungo drivers on Windows, will show up as a virtual
COM port.

• Serial - 9600 7bits Even Parity - No flow control

• IP/Ethernet - Even Parity

Note: Please contact Ingenico for assistance with configuring your device for proper
communication. It is known that the on-screen menu system does NOT work when
configuring Ethernet mode due to the inability to set the Parity to Even. The parity
configuration is a crucial step in ensuring Ethernet connectivity is functional.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 32

10 Certifications and Device Configurations

10.1. Certification List ... 32
10.2. Configuration Definitions ... 33

10.1 Certification List

EMV Certifications are tied to specific device versions, device configurations, and software
versions. During deployment, it is crucial that only certified configurations are used.

Device configurations are based on the EMV kernel version in the device. The available
configurations are listed as part of the EMV LOA (Letter of Approval) for the Level 2 kernel
for the device. The approval letters can be obtained from EMVCo: http://www.emvco.com/
approvals.aspx?id=85

Device EMVKern/Conf UniTerm Module Version Config

Chase Paymentech

Ingenico

iPP320 CPX

4.66/3C 8.0 Paymentech

Tampa 3.2.0

(Jan 2015)

Canada,

Attended,

OfflinePin,

Sig

Verifone

vx805

6.2.0/1C 8.0 Paymentech

Tampa 3.2.0

(Oct 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Moneris

Ingenico

iPP320 CPX

4.66/3C 8.0 Moneris SPDH

2.0.0

(Sep 2015)

Canada,

Attended,

OfflinePin,

Sig

Ingenico iUN

uCPX

4.66/15C 8.0 Moneris SPDH

2.0.0

(Sep 2015)

Canada,

Unattended,

OfflinePin,

NoSig

First Data

Ingenico RBA

family

4.67/1C 8.0 First Data

Cardnet or

Nashville EDC

4.1.0

(Oct 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Verifone

vx805

6.2.0/1C 8.0 First Data

Cardnet or

Nashville EDC

4.1.0

USA, Attended,

OnlinePin,

OfflinePin,

Sig

http://www.emvco.com/approvals.aspx?id=85
http://www.emvco.com/approvals.aspx?id=85

Certifications and
Device Configurations

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 33

Device EMVKern/Conf UniTerm Module Version Config
(Nov 2015)

Tsys

Ingenico RBA

family

4.67/1C 8.0 TSYS (aka

Vital/VisaNet)

3.0.0

(Nov 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Verifone

vx805

6.2.0/1C 8.0 TSYS (aka

Vital/VisaNet)

3.0.0

(Nov 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Global Payments

Ingenico RBA

family

4.67/1C 8.0 Global

Payments East

3.0.0

(Oct 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Verifone

vx805

6.2.0/1C 8.0 Global

Payments East

3.0.0

(Oct 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

WorldPay

Ingenico RBA

family

4.67/1C 8.0 RBS WorldPay

TCMP 2.0.0

(Oct 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Vantiv

Ingenico RBA

family

4.67/1C 8.0 Vantiv/

FifthThird 610

2.1.0

(Dec 2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

10.2 Configuration Definitions

EMV configurations are strictly certified in an "all or nothing" manner. You must choose an
explicit certification from the list in the prior section and all configuration parameters must
be adhered to. For instance, if the certification lists both OnlinePin and OfflinePin, you
cannot simply choose to support only OfflinePin.

The meanings of the various configurations listed in the prior section are below:

Key Description

USA Certified for use in the United States

Canada Certified for use in Canada

Certifications and
Device Configurations

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide |
CONFIDENTIAL 34

Key Description

Attended The environment is monitored by a clerk such as Retail, Restaurant, or
Lodging. Not usable in a Kiosk environment such as a parking meter or gas
pump.

Unattended The environment is NOT monitored by a clerk, for use in kiosk type
environments.

OnlinePin An encrypted PIN can be obtained from a cardholder and sent to the processor
with the transaction. When supporting Online PIN it is required that the device
be injected with a 3DES DUKPT PIN key specific to the processing institution
in use prior to deployment by a merchant.

Note: OnlinePin may not be supported for all card brands of a
given processing institution. UniTerm will automatically adjust
support for the processor's card brand limitations where necessary.

OfflinePin The terminal will negotiate the PIN directly with the chip embedded into the
card without the need to send the PIN to the processing institution. A terminal
does not need a Pin Debit key injected into it if only OfflinePin (and not
OnlinePin) is supported.

Sig Signature cardholder verification is supported. This may either be a signature
capture capable device or a signature obtained via paper receipt.

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 35

A UniTerm Device Loading

When loading a device with Uniterm, Uniterm will send Monetra a list of terminal
configurations from the Letter of Approval (LOA) as provided by device manufacturer for the
device's EMV kernel. Monetra will compare this list to merchant defined settings. Monetra
will then select a usable LOA configuration and return to Uniterm loading data which has been
merged with the merchant's settings.

Some terminal loading data is mandatory and cannot deviate from a LOA configuration. Other
data is merchant configurable and is allowed to be changed. Data that is configurable will be
merged into an LOA configuration by Monetra based on the merchant's settings.

In the event no LOA configuration is valid for the merchant's settings then Monetra will
respond with an error. Also, If the device's EMV kernel version is not certified for use with
Uniterm loading will result in an error.

After a successful load the integration must check altered_termload. If it is "yes" then not
all of the merchant's settings could be used and some of the values have been ignored. The
integration can compare the selected values with the *_desired and *_loa values to determine
what was ignored. It is the choice of the integration to either accept the load with the selected
values or return an error if the merchant's setting have been altered due to being unsupported
by the devices LOA configurations.

Note: If using implicit/auto device loading and not calling u_action=deviceload directly,
an integrator will have no ability to retrieve the deviceload parameters.

PARAMETER OVERVIEW

altered_termload If no LOA configuration matches the merchant's settings a
valid LOA will be used and the merchant's settings will be
overridden. This indicates this has happened.

termtype_desired The terminal type Monetra has determined fits the merchant's
settings.

termcaps_desired Terminal capabilities configured in Monetra. These are
features that the merchant has selected for use.

addltermcaps_desired Additional terminal capabilities configured in Monetra. These
are features that the merchant has selected for use.

termcaps_loa Terminal capabilities from the LOA configuration Monetra
has selected.

addltermcaps_loa Additional terminal capabilities from the LOA configuration
Monetra has selected.

loa_id The LOA configuration id Monetra has selected for use. This
is the id in the device certification document for the kernel
version located at:
http://www.emvco.com/approvals.aspx?id=85

termtype The terminal type from the LOA configuration that will be
loaded into the device.

UniTerm Device Loading

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 36

termcaps Terminal capabilities from the merged LOA configuration and
merchant's settings that will be loaded into the device. Note:
mandatory LOA configuration data will not be changed.

addltermcaps Additional terminal capabilities from the merged LOA
configuration and merchant's settings that will be loaded into
the device. Note: mandatory LOA configuration data will not
be changed.

Example device load response:

u_errorcode = SUCCESS
code = AUTH
verbiage = Device loaded
altered_termload = no
termtype_desired = 21
termcaps_desired = E0B8C8
addltermcaps_desired = 6000F0F001
termcaps_loa = 60B8C8
addltermcaps_loa = 6000F0A001
loa_id = 18C
termtype = 22
termcaps = E0B8C8
addltermcaps = 6000F0F001

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 37

B EMV Receipt Requirements

The UniTerm application ever generate receipts. It is the integrator's responsibility to generate
all proper receipts for both customer and merchant retention. What constitutes a proper receipt
is dependent on a number of factors such as industry, card present vs card not present, and card
entry method (for card present).

The purpose of this section is to provide general information about the receipt data
UniTerm will return and how to use it generate a receipt. This does not cover all aspects of
receipt generation. It also does not cover processor specific formatting requirements. It is
recommended to verify receipts and receipt formatting with your processor before going into
production.

Also there are typically two types of receipts printed. A merchant and a customer copy. Each
one will have most of the same information but there are slight differences between the two.

B.1 Receipt content

B.1.1 Base receipt content

Receipts should include the following blocks and data elements in roughly the order provided
below. All data is required if returned by UniTerm, or otherwise available, unless otherwise
noted.

• Merchant Info Header
• Name - merch_name
• Address - merch_addr1, merch_addr2, merch_addr3
• Phone (optional) - merch_phone
• Email (optional) - merch_email
• Website (optional) - merch_url
• Merchant ID - required by some processors. Recommended to omit or truncate, see
merch_id response documentation for more information.

• Lane ID (optional) - laneid or stationid request parameter.
• Transaction type - request parameter action or equivalent text
• Card information

• Type - cardtype
• Entry mode - rcpt_entry_mode - or equivalent text, some processors may have explicit

mappings they require.
• Interac Account Type - rcpt_acct_type or for Interac Flash (contactless) transactions,

must display INTERAC FLASH DEFAULT. Integrators must convert the UniTerm-returned
value of checking to chequing to comply with Interac requirements.

• Masked Account Number - account
• Transaction reference info

• Date and time - rcpt_host_ts or timestamp
• Identifier - request parameters ordernum or ptrannum
• Additional identifiers (optional) - request parameters such as custref
• ttid (optional) - either request or response ttid
• Batch number - batch

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 38

• Auth number (if authorized) - auth
• Trace information - stan
• Processor response code (some processors may require this) - rcpt_resp_code
• Issuer response code (some processors may require this) - rcpt_issuer_resp_code

• Processor specific custom data - see rcpt_custom
• Monetary amounts

• Tip - Request parameter examount
• Tax - Request parameter tax
• Cash back - Request parameter cashbackamount
• Authorized Amount - authamount if returned, otherwise request parameter amount
• Balance - balance

• Transaction disposition
• Card disposition - See Card Disposition documentation
• Partial Approval Indicator - if authamount returned
• Overall disposition (approved/declined) - code

• Additional Print Data - printdata, Additional data meant to be printed on the receipt as
provided by the processor. Often used for gift/loyalty programs.

• Signature line (if necessary) - u_need_signature=yes
• EMV data

• Application name - rcpt_emv_name
• AID - rcpt_emv_aid
• TVR - rcpt_emv_tvr
• TSI - rcpt_emv_tsi
• Application Cryptogram Type and Cryptogram Value (optional) - rcpt_emv_actype

and rcpt_emv_ac
• Cardholder Notice (such as stating merchant vs customer copy) (optional) - see receipt

examples

B.2 Receipt Data Returned by UniTerm

PARAMETER OVERVIEW

timestamp Unix timestamp representing the time and date
the transaction took place, this should be used
to derive the transaction date if rcpt_host_ts
is not returned.

rcpt_host_ts (REQUIRED): The time and date recorded
from the processor the transaction took place.
MMDDYYHHMMSS format. Use timestamp if
this value is not present in the response.

rcpt_entry_mode (REQUIRED): Indicates how the card data was
captured. Possible values are:

• G: Keyed entry (EMV Fallback)
• M: Keyed entry
• T: EMV Contactless
• C: EMV Contact
• F: Swipe (EMV Fallback)
• R: MSD (RFID) Contactless

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 39

• S: Swipe
• I: MICR Check Read

rcpt_acct_type Interac specific account type chosen by the
customer.

rcpt_emv_cvm For EMV transactions this is the cardholder
verification method performed. Possible values
are:

• none

• sig

• pin

• pinsig

• unknown

For "pin" and "pinsig" the receipt should
say "VERIFIED BY PIN". For "sig" a
signature should be captured.

rcpt_resp_code Response code returned from the processing
institution.

rcpt_issuer_resp_code Response code returned from the issuer.

language Cardholder's language preference. The receipt
should be created using this language if
possible and shall contain the 2 character ISO
language code.

batch The batch number associated with the
transaction.

cardtype Monetra cardtype value. This is the value that
would have been configured in supported card
types for the account. Use this to take card
specific action in receipt generation.

balance Current balance on the card after the
transaction.

rcpt_emv_aid Card Application ID (AID) used

rcpt_emv_name Textual name of card application used.

rcpt_emv_tvr Transaction verification results.

rcpt_emv_tsi Transaction status information.

rcpt_emv_actype (optional). Application Cryptogram type.

• AAC - Application Authentication
Cryptogram (decline)

• ARQC - Application Request Cryptogram
(intermediate or contactless)

• TC - Transaction Certificate (offline or final
approval)

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 40

rcpt_emv_ac (optional). Application Cryptogram.

code Used to determine if the transaction was
approved or declined.

account Masked account number.

cardholdername Customers name as encoded on the card.

auth Authorization code.

stan Processor system trace information (mainly
used for pin-debit transactions).

authamount If the amount authorized is different than the
requested amount this is the amount that must
show on the receipt. It is possible that the
integration could pool multiple transactions on
one receipt and in that case the authamount
needs to be present for each card along with
other card specific receipt data. Note that some
processors do not allow pooling card data onto
one receipt and require separate receipts per
card.

rcpt_custom List of comma separated key:value pairs with
additional processor specific data that needs to
appear on the receipt.

u_errorcode On failure this will provide some information
about the failure. Specifically important to
receipt processing are the EMV_CARD_REMOVED
and EMV_CARD_DENY values.

u_need_signature Used to determine if a signature line is
required.

printdata Additional processor-provided data returned
by some processors that is intended to be
printed on receipts. Often used for Gift/Loyalty
programs. Please consult with your processor
for more information.

issuer_decline Boolean (yes/no). Currently this value is only
returned by Moneris, and is used to indicate if
a decline was due to an issuer decline or a local
processor decline. The purpose of this response
parameter is that Moneris has different receipt
messaging requirements based on who declined
the transaction.

merch_name Merchant Name if configured in merchant
profile. Cached by UniTerm from merchinfo
request and sent on every transaction response.

merch_addr1 Merchant Address Line 1 if configured
in merchant profile. Cached by UniTerm

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 41

from merchinfo request and sent on every
transaction response.

merch_addr2 Merchant Address Line 2 if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_addr3 Merchant Address Line 3 if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_phone Merchant Phone Number if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_email Merchant Contact Email if configured in
merchant profile. Cached by UniTerm from
merchinfo request and sent on every
transaction response.

merch_url Merchant URL or Website if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_id Merchant ID truncated to only the last 4
digits if available. Cached by UniTerm
from merchinfo request and sent on every
transaction response. The Merchant ID is
required by some processors for EMV, though
due to rampant "return fraud", we strongly
discourage integrators from providing the full
Merchant ID on receipts. Instead, if you choose
to display the merchant id, it should display
only the last 4 digits. This field can be used for
that purpose.

merch_proc Merchant Processing Institution (internal name)
used. Cached by UniTerm from merchinfo
request and sent on every transaction
response. This may be used to trigger different
receipt formats based on processor-specific
requirements.

B.3 Receipt Data NOT Returned by UniTerm

This is information is data that may have been sent to UniTerm on the request that should be
on the receipt.

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 42

PARAMETER OVERVIEW

Transaction Type The initiating application should know which transaction type
is being preformed (Sale, Refund etc.).

Transaction Identifier ordernum or ptrannum if present.

Additional Identifier custref if present.

ttid When performing a transaction such as return by ttid the
referenced ttid should be present on the receipt. This will aid
in tracking the original transaction that was returned.

Amount Information • Tip - Tip amount for order as provided in the examount
field in request.

• Tax - Tax amount for order
• Amount - Authorized amount, either the amount passed

in or the partially approved amount provided in the
authamount field.

• Cash Back Amount - Amount of Cash Back (currently
not supported)

Card Disposition • When u_errorcode is EMV_CARD_REMOVED, should say:
"CARD REMOVED"

• When u_errorcode is EMV_CARD_DENY, should say:
"DECLINED BY CARD"

• When rcpt_emv_cvm is pin or pinsig, should say:
"VERIFIED BY PIN"

• When rcpt_entry_mode is F or G, should say: "CHIP
CARD SWIPED"

• When authamount is returned and is not equal to
requested amount, should say: "TRANSACTION
PARTIALLY APPROVED"

B.4 Signature Line Requirements

The only time a signature line is necessary when using Uniterm is when
u_need_signature=yes. Internally Uniterm will handle logic to determine if the signature line is
needed on the paper receipt.

When set to yes this indicates that a signature line is required on the receipt. If possible
Uniterm will attempt to capture the signature thought the device. If this fails or is not possible
then this value will indicate that signature is still required.

B.5 Merchant vs Customer Copy

For the most part merchant and customer receipt requirements are identical, though there are a
couple of minor exceptions.

Merchant receipts must NOT contain a balance line

Customer receipt must not contain a signature line

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 43

B.6 Moneris Requirements

Moneris has additional receipt requirements that are not covered by this section due to direct
contradictions with requirements as provided by other processing institutions and the card
brands themselves. The receipt requirements documented are insufficient to comply with
Moneris requirements but do comply with the card brand requirements. The additional
requirements imposed are specific to Moneris and appear to be arbitrary, a large enough
merchant might be able to negotiate different receipt formats since there is no industry
regulation being followed.

If intending to work with Moneris, it is required that integrators create a custom receipt
template specific to Moneris that is used only on Moneris, and a separate template that
is used for all other processors. Integrators must contact Moneris directly to receive their
receipt formatting requirements. UniTerm does return sufficient data to format the Moneris-
specific receipts, it simply may require some data to be manipulated, formatted, or translated to
different languages to comply with their requirements.

B.7 Receipt Examples

Main Street successfully certified EMV, across several processors, using the examples
provided below. Note these examples were designed to format properly on a common 25
character receipt printer.

Note: Receipt requirements required for the card brands for EMV and various processors
tend to be very strict. We strongly recommend integrators make their receipts resemble those
of the examples as closely as possible. Any divergence from the receipt examples provided
below may require you seek validation of such receipts from your processor.

B.7.1 EMV Insert, Signature Required

B.7.1.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXX2513

auth 196805

batch 1

cardholdername AEIPS 24 TEST CARD

cardtype AMEX

code AUTH

item 570

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 44

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom refnum:660136000010015700

rcpt_emv_ac 5C221DC28EB72FCF

rcpt_emv_actype TC

rcpt_emv_aid A000000025010801

rcpt_emv_cvm sig

rcpt_emv_name AMERICAN EXPRESS

rcpt_emv_tsi FC00

rcpt_emv_tvr 0000008000

rcpt_entry_mode C

rcpt_issuer_resp_code 00

rcpt_resp_code 025

timestamp 1437407566

ttid 743

u_errorcode SUCCESS

u_need_signature yes

B.7.1.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
AMEX C
Card: XXXXXXXXXXX2513
Date/Time: 072015115246
Order #: 5096
TTID: 743
Auth: 196805 Batch: 1
refnum:660136000010015700

AMOUNT: 34.00

 APPROVED

SIGNATURE

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 45

CARDHOLDER WILL PAY CARD
 ISSUER ABOVE AMOUNT
 PURSUANT TO CARDHOLDER
 AGREEMENT

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008000
TSI FC00
TC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 46

B.7.2 EMV Insert, PIN Verified

B.7.2.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXX1007

auth 196123

batch 1

cardholdername AEIPS 20 TEST CARD

cardtype AMEX

code AUTH

item 567

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom refnum:660136000010015670

rcpt_emv_ac 5C221DC28EB72FCF

rcpt_emv_actype TC

rcpt_emv_aid A000000025010801

rcpt_emv_cvm pin

rcpt_emv_name AMERICAN EXPRESS

rcpt_emv_tsi F800

rcpt_emv_tvr 0000008000

rcpt_entry_mode C

rcpt_issuer_resp_code 00

rcpt_resp_code 025

timestamp 1437407332

ttid 740

u_errorcode SUCCESS

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 47

B.7.2.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
AMEX C
Card: XXXXXXXXXXX1007
Date/Time: 072015114852
Order #: 24425
TTID: 740
Auth: 196123 Batch: 1
refnum:660136000010015670

AMOUNT: 30.00

 VERIFIED BY PIN

 APPROVED

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008000
TSI F800
TC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 48

B.7.3 EMV Insert, No CVM

B.7.3.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXX1005

auth 201507

batch 1

cardholdername AEIPS 32/VER 1.0

cardtype AMEX

code AUTH

item 590

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom refnum:660136000010015900

rcpt_emv_ac 5C221DC28EB72FCF

rcpt_emv_actype TC

rcpt_emv_aid A000000025010801

rcpt_emv_cvm none

rcpt_emv_name AMERICAN EXPRESS

rcpt_emv_tsi F800

rcpt_emv_tvr 0000008000

rcpt_entry_mode C

rcpt_issuer_resp_code 00

rcpt_resp_code 025

timestamp 1437409256

ttid 764

u_errorcode SUCCESS

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 49

B.7.3.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
AMEX C
Card: XXXXXXXXXXX1005
Date/Time: 072015122056
Order #: 4753
TTID: 764
RespCode: 00/025
Auth: 201507 Batch: 1
refnum:660136000010015900

AMOUNT: 62.00

 APPROVED

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008000
TSI F800
TC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 50

B.7.4 EMV Insert, Card Decline

B.7.4.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXX1007

batch 1

cardholdername AEIPS 20 TEST CARD

cardtype AMEX

code DENY

item 584

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom refnum:660136000010015850

rcpt_emv_ac 5C221DC28EB72FCF

rcpt_emv_actype AAC

rcpt_emv_aid A000000025010801

rcpt_emv_cvm pin

rcpt_emv_name AMERICAN EXPRESS

rcpt_emv_tsi F800

rcpt_emv_tvr 0000008040

rcpt_entry_mode C

timestamp 1437408892

ttid 758

u_errorcode EMV_CARD_DENY

verbiage Transaction aborted - declined by

card

B.7.4.2 Example Receipt

 MERCHANT NAME

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 51

 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
AMEX C
Card: XXXXXXXXXXX1007
Date/Time: 072015121452
Order #: 27661
TTID: 758
 Batch: 1
refnum:660136000010015850

AMOUNT: 52.00

 DECLINED BY CARD
 VERIFIED BY PIN

 DECLINED

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008040
TSI F800
AAC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 52

B.7.5 EMV Insert, Card Removed (Decline)

B.7.5.1 Uniterm Response Data

PARAMETER VALUE

code DENY

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

u_errorcode EMV_CARD_REMOVED

verbiage Transaction aborted - card removed

B.7.5.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
Date/Time: 072015175737
Order #: 899065992

AMOUNT: 1.00

 CARD REMOVED

 DECLINED

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 53

B.7.6 EMV Insert, Interac

B.7.6.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX1933

auth 490708

batch 1

cardholdername Test Card 1

cardtype INTERAC

code AUTH

item 623

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_acct_type checking

rcpt_custom refnum:660136000010016230

rcpt_emv_ac 882D8427A268E214

rcpt_emv_actype TC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm pin

rcpt_emv_name Interac

rcpt_emv_tsi 7800

rcpt_emv_tvr 8000008000

rcpt_entry_mode C

rcpt_host_ts 072015160749

rcpt_issuer_resp_code 00

rcpt_resp_code 001

timestamp 1437422869

ttid 804

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 54

u_errorcode SUCCESS

B.7.6.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
INTERAC C
Acct Type: CHECKING
Card: XXXXXXXXXXXX1933
Date/Time: 072015160749
Order #: 1395
TTID: 804
Auth: 490708 Batch: 1
refnum:660136000010016230

AMOUNT: 5.01

 VERIFIED BY PIN

 APPROVED

Interac
AID A0000002771010
TVR 8000008000
TSI 7800
TC 882D8427A268E214

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 55

B.7.7 EMV Contactless, Interac Flash Decline

B.7.7.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXXXXXX1311

cardtype INTERAC

code DENY

issuer_decline yes

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

phard_code GENERICFAIL

printdata CARD CANCELLED*REFER TO BRANCH

rcpt_acct_type flash

rcpt_custom refnum:660136000010016710

rcpt_emv_ac ED538D29D3390729

rcpt_emv_actype ARQC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm unknown

rcpt_emv_name Interac

rcpt_emv_tvr 0080008000

rcpt_entry_mode T

rcpt_host_ts 072015180303

rcpt_issuer_resp_code 05

rcpt_resp_code 058

sequenceid 671

timestamp 1437429783

ttid 861

u_errorcode MONETRA_ERROR

verbiage DECLINED * CARD CANCELLED

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 56

B.7.7.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
INTERAC T
Acct Type: FLASH DEFAULT
Card: XXXXXXXXXXXXXXX1311
Date/Time: 072015180303
Order #: 899065992
TTID: 861
refnum:660136000010016710

AMOUNT: 1.09

 DECLINED

Interac
AID A0000002771010
TVR 0080008000
ARQC ED538D29D3390729

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 57

B.7.8 EMV Contactless, Decline

B.7.8.1 Uniterm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0010

cardholdername ETEC/PAYPASS

cardtype MC

code DENY

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

phard_code GENERICFAIL

rcpt_custom refnum:660136000010016700

rcpt_emv_ac 16D1284D85A29DF2

rcpt_emv_actype ARQC

rcpt_emv_aid A0000000041010

rcpt_emv_cvm none

rcpt_emv_name PPC MCD 01 v2 2

rcpt_emv_tvr 0000008000

rcpt_entry_mode T

rcpt_issuer_resp_code 51

rcpt_resp_code 481

sequenceid 670

timestamp 1437429662

ttid 860

u_errorcode MONETRA_ERROR

verbiage DECLINED *

B.7.8.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

EMV Receipt Requirements

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 58

 SALE

MID: 1625 Lane: 1
MC T
Card: XXXXXXXXXXXX0010
Date/Time: 072015180102
Order #: 899065992
TTID: 860
refnum:660136000010016700

AMOUNT: 10.51

 DECLINED

PPC MCD 01 v2 2
AID A0000000041010
TVR 0000008000
ARQC 16D1284D85A29DF2

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 59

C UniTerm Code Examples

C.1 Microsoft C# using libmonetra

 1 /* Monetra Uniterm example program in C#
 2 *
 3 * Depends on the libmonetra C# .Net native API
 4 *
 5 * Implemented based on the Monetra Uniterm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 using System;
 11 using System.Collections;
 12 using System.Diagnostics;
 13 using System.IO;
 14 using System.Text;
 15 using System.Threading;
 16 using libmonetra;
 17
 18 /* NOTE: if compiling with Mono, you can use
 19 * gmcs /unsafe utest.cs libmonetra.cs
 20 */
 21
 22 class UTest {
 23 /* Monetra Connectivity Information
 24 * NOTE: This is currently pointing to our Test Server that you may
 25 * use for initial testing if desired. Obviously for production,
 26 * or testing with encrypted card readers, you need to point
 27 * this to your local Monetra server and the username/password
 28 * you configured there. Please take note of the restrictions
 29 * on the user permissions requirements in the Uniterm Guide.
 30 */
 31 private const string monetra_host = "testbox.monetra.com";
 32 private const int monetra_port = 8665;
 33 private const string monetra_user = "test_retail:public";
 34 private const string monetra_pass = "publ1ct3st";
 35
 36
 37 /* Uniterm Connectivity Information
 38 * NOTE: this is the default, it is possible to change, but 99%
 39 * of deployments will probably use this Uniterm information
 40 * as-is
 41 */
 42 private const string uniterm_host = "localhost";
 43 private const int uniterm_port = 8123;
 44
 45
 46 static string uniterm_path()
 47 {
 48 switch (Environment.OSVersion.Platform) {
 49 case PlatformID.Win32NT:
 50 case PlatformID.Win32S:
 51 case PlatformID.Win32Windows:

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 60

 52 case PlatformID.WinCE:
 53 return "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe";
 54 default:
 55 return "/usr/local/monetra/bin/monetra_uniterm";
 56 }
 57 }
 58
 59 /*! Function to launch the Uniterm from the current process.
 60 * If we don't launch it from the current process, it won't be given
 61 * focus! (at least on Windows this is true, until the first
 62 * manual focus is performed by an end-user) */
 63 static void uniterm_launch()
 64 {
 65 Process uniterm = new Process();
 66 uniterm.StartInfo.FileName = uniterm_path();
 67 uniterm.StartInfo.CreateNoWindow = true;
 68
 69 uniterm.Start();
 70
 71 /* Make sure Uniterm is ready before returning,
 72 * Sleep 1000ms (1s) */
 73 System.Threading.Thread.Sleep(1000);
 74 }
 75
 76
 77 /*! Function to connect to an endpoint which uses the standard 'monetra'
 78 * style protocol (so either Monetra itself, or Uniterm)
 79 * \param[in] host Resolvable hostname or IP address to connect to
 80 * \param[in] port Port associated with hostname to establish an SSL
 81 * connection to
 82 * \param[out] errorstr Textual error message if returns null
 83 * \return Initialized connection class on success. null on failure
 84 */
 85 static Monetra uniterm_connect_host(string host, int port, ref string errorstr)
 86 {
 87 /* Initialize the Class */
 88 Monetra conn = new Monetra();
 89
 90 errorstr = "";
 91
 92 /* We always want to use an SSL connection to Monetra and Uniterm */
 93 conn.SetSSL(host, port);
 94
 95 /* Do not verify the SSL certificate, Monetra and the Uniterm
 96 * use self-signed certificates by default which cannot be validated.
 97 * The connection is still encrypted, the endpoint just isn't strictly
 98 * validated */
 99 conn.VerifySSLCert(false);
 100
 101 /* This makes it so TransSend() will block until a response is
 102 * received from Monetra. Simplifies the API since we will never
 103 * have more than one outstanding transaction per connection in
 104 * this application */
 105 conn.SetBlocking(true);
 106
 107 /* Connect! */
 108 if (!conn.Connect()) {
 109 errorstr = conn.ConnectionError();

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 61

 110 return null;
 111 }
 112
 113 return conn;
 114 }
 115
 116
 117 /*! Wrapper function to connect to Uniterm
 118 * \param[out] errorstr Textual error message if returns null
 119 * \return Initialized connection class on success. null on failure
 120 */
 121 static Monetra uniterm_connect(ref string errorstr)
 122 {
 123 Monetra conn;
 124 string myerror = "";
 125 conn = uniterm_connect_host(uniterm_host, uniterm_port, ref myerror);
 126 if (conn == null) {
 127 errorstr = "Connection to Uniterm Failed: " + myerror;
 128 }
 129 return conn;
 130 }
 131
 132
 133 /*! Request a transaction from Uniterm as documented in the Uniterm Guide.
 134 * The Key/Value pair params are a combination of the Parameters as
 135 * documented in the Uniterm Guide and the Monetra Client Interface
 136 * Protocol Spec.
 137 * \param[in] uniterm_conn Initialized connection to Uniterm
 138 * as returned by uniterm_connect()
 139 * \param[in] mparams Array of key/value parameters to send to
 140 * Uniterm
 141 * \return Hashtable of string key/value pairs from response. Please refer
 142 * to the Uniterm Guide and Monetra Client Interface Protocol
 143 * specification for the applicable list based on the action being
 144 * performed. "code" and "u_errorcode" are always guaranteed to
 145 * be returned.
 146 */
 147 static Hashtable uniterm_sendrequest(Monetra uniterm_conn, Hashtable mparams)
 148 {
 149 int id;
 150
 151 Hashtable response = new Hashtable();
 152
 153 /* Request a new transaction from libmonetra */
 154 id = uniterm_conn.TransNew();
 155
 156 /* For each item in the params hashtable, add it to the transaction */
 157 foreach (DictionaryEntry kv in mparams) {
 158 uniterm_conn.TransKeyVal(id, (String)kv.Key, (String)kv.Value);
 159 }
 160
 161 /* Send the request to the Uniterm. It will not return until
 162 * a response is available, or a disconnect is detected */
 163 if (!uniterm_conn.TransSend(id)) {
 164 /* Disconnect detected, return an appropriate error condition!
 165 * This should really never happen though... */
 166 response["code"] = "DENY";
 167 response["u_errorcode"] = "CONN_ERROR";

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 62

 168 response["verbiage"] = "Connection to Uniterm failed: "
 169 + uniterm_conn.ConnectionError();
 170 return response;
 171 }
 172
 173 /* Save the response parameters from the Uniterm into a
 174 * HashTable as our function prototype states. */
 175 string[] keys = uniterm_conn.ResponseKeys(id);
 176 for (int i=0; i < keys.Length; i++) {
 177 response[keys[i]] = uniterm_conn.ResponseParam(id, keys[i]);
 178 }
 179
 180 /* Free up some memory by purging unneeded data */
 181 uniterm_conn.DeleteTrans(id);
 182
 183 return response;
 184 }
 185
 186
 187 /*! Tell Uniterm to shutdown. Since we start it up, we should make sure
 188 * we turn it off prior to exiting otherwise the user will be prompted
 189 * with an error message stating the Uniterm is already running on the
 190 * next execution of this application!
 191 * \param[in] uniterm_conn Initialized connection to the Uniterm
 192 * as returned by uniterm_connect()
 193 */
 194 static void uniterm_shutdown(Monetra uniterm_conn)
 195 {
 196 Hashtable mparams = new Hashtable();
 197 mparams["u_action"] = "shutdown";
 198 uniterm_sendrequest(uniterm_conn, mparams);
 199 }
 200
 201
 202 /*! Main entry point to this application to be executed */
 203 static void Main()
 204 {
 205 Monetra uniterm_conn;
 206 string errorstr = "";
 207 Hashtable response;
 208
 209 /* Step1: Launch the Uniterm */
 210 uniterm_launch();
 211 Console.WriteLine("Uniterm Launched");
 212
 213 /* Step2: Connect to the Uniterm */
 214 uniterm_conn = uniterm_connect(ref errorstr);
 215 if (uniterm_conn == null) {
 216 Console.WriteLine("Failure: " + errorstr);
 217 return;
 218 }
 219 Console.WriteLine("Connected to Uniterm");
 220
 221
 222 /* Step3: Send txnrequest to Uniterm */
 223 Hashtable mparams = new Hashtable();
 224 /* Append the parameters for the txnrequest */
 225 mparams["username"] = monetra_user;

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 63

 226 mparams["password"] = monetra_pass;
 227 mparams["u_action"] = "txnrequest";
 228 mparams["u_devicetype"] = "ingenico_rba";
 229 mparams["u_device"] = "USB";
 230
 231 /* Append the parameters for the transaction that will also get passed
 232 * to Monetra such as the 'action', 'amount', etc. as described in the
 233 * Monetra Client Interface Protocol Specification */
 234 mparams["action"] = "sale";
 235 mparams["amount"] = "12.00";
 236 mparams["ordernum"] = "123456";
 237 mparams["comments"] = "u_txnrequest";
 238
 239 response = uniterm_sendrequest(uniterm_conn, mparams);
 240 if (String.Compare((string)response["code"], "AUTH", true) != 0) {
 241 Console.WriteLine("Transaction failed.");
 242 } else {
 243 Console.WriteLine("Transaction SUCCESSFUL!");
 244 }
 245
 246 /* Print out all the response key/value pairs ... */
 247 foreach (DictionaryEntry kv in response) {
 248 Console.WriteLine("\t" + (string)kv.Key + " = " + (string)kv.Value);
 249 }
 250
 251 /* NOTE: No real reason to exit here ... we could just keep running
 252 * Step 3 all day long as long as you keep the uniterm_conn handle.
 253 * No reason to keep disconnecting and reconnecting, or
 254 * starting/stopping the Uniterm.
 255 */
 256
 257 /* Step4: Cleanup */
 258 uniterm_shutdown(uniterm_conn);
 259
 260 /* Connections will be automatically closed when the uniterm_conn
 261 * initialized class is closed by the destructor/garbage
 262 * collector */
 263 }
 264
 265 }
 266
 267

C.2 Microsoft C# using XML and HttpWebRequest

 1 /* Monetra Uniterm example program in C# using XML and HttpWebRequest
 2 *
 3 * Works with .Net Compact Framework v2
 4 *
 5 * Implemented based on the Monetra Uniterm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 using System;
 11 using System.Diagnostics;

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 64

 12 using System.Collections.Generic;
 13 using System.Text;
 14 using System.IO;
 15 using System.Threading;
 16 using System.Collections;
 17 using System.Net;
 18 using System.Xml;
 19 using System.ComponentModel;
 20 using System.Windows.Forms;
 21 using System.Security.Cryptography.X509Certificates;
 22
 23 /* NOTE: if compiling with Mono, you can use
 24 * gmcs -r:System.Windows.Forms.dll utest_xml.cs
 25 */
 26
 27 class utest_xml
 28 {
 29 /* Monetra Connectivity Information
 30 * NOTE: This is currently pointing to our Test Server that you may
 31 * use for initial testing if desired. Obviously for production,
 32 * or testing with encrypted card readers, you need to point
 33 * this to your local Monetra server and the username/password
 34 * you configured there. Please take note of the restrictions
 35 * on the username setup as listed in section 4.2 of the
 36 * Uniterm Guide (the red note at the bottom of that section).
 37 */
 38 private const string monetra_host = "testbox.monetra.com";
 39 private const int monetra_port = 8665;
 40 private const string monetra_user = "test_retail:public";
 41 private const string monetra_pass = "publ1ct3st";
 42
 43
 44 /* Uniterm Connectivity Information
 45 * NOTE: this is the default, it is possible to change, but 99%
 46 * of deployments will probably use this Uniterm information
 47 * as-is
 48 */
 49 private const string uniterm_host = "localhost";
 50 private const int uniterm_port = 8123;
 51
 52
 53 static string uniterm_path()
 54 {
 55 switch (Environment.OSVersion.Platform) {
 56 case PlatformID.Win32NT:
 57 case PlatformID.Win32S:
 58 case PlatformID.Win32Windows:
 59 case PlatformID.WinCE:
 60 return "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe";
 61 default:
 62 return "/usr/local/monetra/bin/monetra_uniterm";
 63 }
 64 }
 65
 66
 67 /*! Function to launch Uniterm from the current process.
 68 * If we don't launch it from the current process, it won't be given
 69 * focus! (at least on Windows this is true, until the first

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 65

 70 * manual focus is performed by an end-user) */
 71 static void uniterm_launch()
 72 {
 73 Process monetra_uniterm = new Process();
 74 monetra_uniterm.StartInfo.FileName = uniterm_path();
 75 /* Not supported on CE
 76 * monetra_uniterm.StartInfo.CreateNoWindow = true;
 77 */
 78
 79 monetra_uniterm.Start();
 80
 81 /* Make sure Uniterm is ready before returning,
 82 * Sleep 1000ms (1s) */
 83 System.Threading.Thread.Sleep(1000);
 84 }
 85
 86
 87 /*! Trust all SSL server certificates */
 88 internal class AcceptAllCertificatePolicy : ICertificatePolicy
 89 {
 90 public AcceptAllCertificatePolicy()
 91 {
 92 }
 93 public bool CheckValidationResult(ServicePoint sPoint,
 94 X509Certificate cert,
 95 WebRequest wRequest, int certProb)
 96 {
 97 // *** Always accept
 98 return true;
 99 }
 100 }
 101
 102
 103 /*! Function to POST and XML message to a Monetra-like entity
 104 * (Monetra or Uniterm) via HTTPS. It will return
 105 * the key/value pairs from the XML response
 106 * \param[in] host Host to connect to
 107 * \param[in] port Port to connect to (via SSL/HTTPS)
 108 * \param[in] xml String-form XML to post
 109 * \return True on successful communication, False if communication failed.
 110 * Note: True doesn't mean the transaction itself was successful.
 111 */
 112 static Hashtable uniterm_https_post(string host, int port, string xml)
 113 {
 114 Hashtable response = new Hashtable();
 115 string url = "https://" + host + ":" + port.ToString();
 116 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
 117 string xmlout;
 118
 119 try {
 120 /* POST Request */
 121
 122 /* Disable SSL Server Certificate Checking */
 123 System.Net.ServicePointManager.CertificatePolicy =
 124 new AcceptAllCertificatePolicy();
 125
 126 byte[] bytes;
 127 bytes = System.Text.Encoding.ASCII.GetBytes(xml);

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 66

 128 req.Method = "POST";
 129 req.ContentType = "text/xml";
 130 req.ContentLength = bytes.Length;
 131 Stream reqStream = req.GetRequestStream();
 132 reqStream.Write(bytes, 0, bytes.Length);
 133 reqStream.Close();
 134
 135 /* Read Response */
 136 /* Note issues with .Net CF v2 as per below:
 137 * http://blogs.msdn.com/b/andrewarnottms/archive/2007/11/19/why-net-compact-framework-fails-to-call-some-https-web-servers.aspx
 138 * http://support.microsoft.com/kb/970549
 139 * If the Server is OpenSSL, this can be worked around by setting
 140 * SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
 141 */
 142 HttpWebResponse resp = (HttpWebResponse)req.GetResponse();
 143 Stream respStream = resp.GetResponseStream();
 144 StreamReader rdr = new StreamReader(respStream);
 145 xmlout = rdr.ReadToEnd();
 146 rdr.Close();
 147 } catch (System.Net.WebException e) {
 148 response["code"] = "DENY";
 149 response["u_errorcode"] = "CONN_ERROR";
 150 response["verbiage"] = "Connection to " + url + " failed: " +
 151 e.Message;
 152 return response;
 153 }
 154 XmlDocument xmldoc = new XmlDocument();
 155 xmldoc.LoadXml(xmlout);
 156
 157 XmlNodeList trans = xmldoc.DocumentElement.
 158 SelectSingleNode("Resp").ChildNodes;
 159 foreach (XmlNode kv in trans) {
 160 response[kv.Name] = kv.InnerText;
 161 }
 162 return response;
 163 }
 164
 165
 166 /*! Request a ttransaction from Uniterm as documented in the Monetra
 167 * Uniterm Guide. The Key/Value pair params are a combination of the
 168 * Parameters as documented in the Uniterm Guide and the Monetra Client
 169 * Interface Protocol Spec.
 170 * \param[in] mparams Array of key/value parameters to send to Uniterm
 171 * \return Hashtable of string key/value pairs from response. Please refer
 172 * to the Uniterm Guide and Monetra Client Interface Protocol
 173 * specification for the applicable list based on the action being
 174 * performed. "code" and "u_errorcode" are always guaranteed to
 175 * be returned.
 176 */
 177 static Hashtable uniterm_sendrequest(Hashtable mparams)
 178 {
 179 string XML;
 180
 181 XML = "<MonetraTrans>" +
 182 "<Trans identifier='1'>";
 183
 184 /* For each item in the params hashtable, add it to the transaction */
 185 foreach (DictionaryEntry kv in mparams) {

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 67

 186 XML = XML + "<" + (String)kv.Key + ">" + (String)kv.Value + "</" +
 187 (string)kv.Key + ">";
 188 }
 189
 190 XML = XML + "</Trans></MonetraTrans>";
 191
 192 return uniterm_https_post(uniterm_host, uniterm_port, XML);
 193 }
 194
 195
 196 /*! Tell Uniterm to shutdown. Since we start it up,
 197 * we should make sure we turn it off prior to exiting otherwise
 198 * the user will be prompted with an error message stating
 199 * Uniterm is already running on the next execution
 200 * of this application!
 201 */
 202 static void uniterm_shutdown()
 203 {
 204 Hashtable mparams = new Hashtable();
 205 mparams["u_action"] = "shutdown";
 206 uniterm_sendrequest(mparams);
 207 }
 208
 209
 210 /*! Main entry point to this application to be executed */
 211 static void Main()
 212 {
 213 Hashtable response;
 214
 215 /* Step1: Launch Uniterm */
 216 uniterm_launch();
 217 MessageBox.Show("Uniterm Launched");
 218
 219
 220 /* Step2: Send txnrequest to Uniterm */
 221 Hashtable mparams = new Hashtable();
 222 /* Append the parameters for the ticket request as per the Monetra
 223 * Uniterm Guide, section 4 */
 224 mparams["username"] = monetra_user;
 225 mparams["password"] = monetra_pass;
 226 mparams["u_action"] = "txnrequest";
 227 mparams["u_devicetype"] = "ingenico_rba";
 228 mparams["u_device"] = "USB";
 229
 230 /* Append the parameters for the transaction that will also get passed
 231 * to Monetra such as the 'action', 'amount', etc. as described in the
 232 * Monetra Client Interface Protocol Specification */
 233 mparams["action"] = "sale";
 234 mparams["amount"] = "12.00";
 235 mparams["ordernum"] = "123456";
 236 mparams["comments"] = "u_txnrequest";
 237
 238 response = uniterm_sendrequest(mparams);
 239 string resultMsg = "";
 240 if (String.Compare((string)response["code"], "AUTH", true) != 0) {
 241 resultMsg = "Transaction failed.\r\n";
 242 } else {
 243 resultMsg = "Transaction SUCCESSFUL!\r\n";

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 68

 244 }
 245
 246 /* Print out all the response key/value pairs ... */
 247 foreach (DictionaryEntry kv in response) {
 248 resultMsg = resultMsg + (string)kv.Key + " = " + (string)kv.Value +
 249 "\r\n";
 250 }
 251
 252 MessageBox.Show(resultMsg);
 253
 254 /* NOTE: No real reason to exit here ... we could just keep running
 255 * Step 2 all day long as long.
 256 * No reason to keep starting/stopping Uniterm.
 257 */
 258
 259 /* Step3: Cleanup */
 260 uniterm_shutdown();
 261
 262 /* Connections will be automatically closed when the uniterm_conn
 263 * initialized class is closed by the destructor/garbage
 264 * collector */
 265 }
 266 }
 267

C.3 Java using libmonetra

 1 /* Uniterm example program in Java
 2 *
 3 * Depends on the libmonetra Java native API
 4 *
 5 * Implemented based on the Monetra Uniterm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 import java.util.Hashtable;
 11 import java.util.Enumeration;
 12 import com.mainstreetsoftworks.MONETRA;
 13
 14 /* Compile/run with:
 15 * javac -classpath MONETRA.jar utest.java
 16 * java -cp "./MONETRA.jar:." utest
 17 */
 18
 19 class utest {
 20 /* Monetra Connectivity Information
 21 * NOTE: This is currently pointing to our Test Server that you may
 22 * use for initial testing if desired. Obviously for production,
 23 * or testing with encrypted card readers, you need to point
 24 * this to your local Monetra server and the username/password
 25 * you configured there. Please take note of the restrictions
 26 * on the user permission setup as described in the Monetra Uniterm
 27 * Guide.
 28 */
 29 private static String monetra_host = "testbox.monetra.com";

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 69

 30 private static int monetra_port = 8665;
 31 private static String monetra_user = "test_retail:public";
 32 private static String monetra_pass = "publ1ct3st";
 33
 34
 35 /* Uniterm Connectivity Information
 36 * NOTE: this is the default, it is possible to change, but 99%
 37 * of deployments will probably use this uniterm information
 38 * as-is
 39 */
 40 private static String uniterm_host = "localhost";
 41 private static int uniterm_port = 8123;
 42
 43 static String uniterm_path()
 44 {
 45 if (System.getProperty("os.name").startsWith("Windows")) {
 46 return "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe";
 47 } else {
 48 return "/usr/local/monetra/bin/monetra_uniterm";
 49 }
 50 }
 51
 52
 53 /*! Function to launch Uniterm from the current process. If we don't
 54 * launch it from the current process, it won't be given focus!
 55 * (at least on Windows this is true, until the first manual focus is
 56 * performed by an end-user) */
 57 static void uniterm_launch()
 58 {
 59 try {
 60 Process p = new ProcessBuilder(uniterm_path()).start();
 61 } catch (java.io.IOException e) {
 62 System.out.println(e.getMessage());
 63 System.exit(1);
 64 }
 65 /* Make sure Uniterm is ready before returning,
 66 * Sleep 1000ms (1s) */
 67 try {
 68 Thread.sleep(1000);
 69 } catch (InterruptedException e) {
 70 }
 71 }
 72
 73
 74 /*! Function to connect to an endpoint which uses the standard 'monetra'
 75 * style protocol (so either Monetra itself, or Uniterm)
 76 * \param[in] host Resolvable hostname or IP address to connect to
 77 * \param[in] port Port associated with hostname to establish an SSL
 78 * connection to
 79 * \param[out] errorstr Textual error message if returns null
 80 * \return Initialized connection class on success. null on failure
 81 */
 82 static MONETRA uniterm_connect_host(String host, int port,
 83 StringBuilder errorstr)
 84 {
 85 /* Initialize the Class */
 86 MONETRA conn = new MONETRA("");
 87

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 70

 88 errorstr.setLength(0);
 89
 90 /* We always want to use an SSL connection to Monetra and Uniterm */
 91 conn.SetSSL(host, port);
 92
 93 /* Do not verify the SSL certificate, Monetra and Uniterm
 94 * use self-signed certificates by default which cannot be validated.
 95 * The connection is still encrypted, the endpoint just isn't strictly
 96 * validated */
 97 conn.VerifySSLCert(0);
 98
 99 /* This makes it so TransSend() will block until a response is
 100 * received from Monetra. Simplifies the API since we will never
 101 * have more than one outstanding transaction per connection in
 102 * this application */
 103 conn.SetBlocking(1);
 104
 105 /* Connect! */
 106 if (conn.Connect() == 0) {
 107 errorstr.append(conn.ConnectionError());
 108 return null;
 109 }
 110
 111 return conn;
 112 }
 113
 114
 115 /*! Wrapper function to connect to Uniterm
 116 * \param[out] errorstr Textual error message if returns null
 117 * \return Initialized connection class on success. null on failure
 118 */
 119 static MONETRA uniterm_connect(StringBuilder errorstr)
 120 {
 121 MONETRA conn;
 122 StringBuilder myerror = new StringBuilder();
 123 conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror);
 124 if (conn == null) {
 125 errorstr.setLength(0);
 126 errorstr.append("Connection to Uniterm Failed: " +
 127 myerror.toString());
 128 }
 129 return conn;
 130 }
 131
 132
 133 /*! Request a transaction from Uniterm as documented in the Monetra
 134 * Uniterm Guide. The Key/Value pair params are a combination of the
 135 * Parameters as documented in the Uniterm Guide and the Monetra Client
 136 * Interface Protocol Spec.
 137 * \param[in] uniterm_conn Initialized connection to Uniterm
 138 * as returned by uniterm_connect()
 139 * \param[in] mparams Array of key/value parameters to send to
 140 * Uniterm
 141 * \return Hashtable of string key/value pairs from response. Please refer
 142 * to the Uniterm Guide and Monetra Client Interface Protocol
 143 * specification for the applicable list based on the action being
 144 * performed. "code" and "u_errorcode" are always guaranteed to
 145 * be returned.

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 71

 146 */
 147 static Hashtable<String,String> uniterm_sendrequest(MONETRA uniterm_conn,
 148 Hashtable<String,String> mparams)
 149 {
 150 long id;
 151
 152 Hashtable response = new Hashtable<String,String>();
 153
 154 /* Request a new transaction from libmonetra */
 155 id = uniterm_conn.TransNew();
 156
 157 /* For each item in the params hashtable, add it to the transaction */
 158 for (String key : mparams.keySet()) {
 159 String value = mparams.get(key);
 160 uniterm_conn.TransKeyVal(id, key, value);
 161 }
 162
 163 /* Send the request to the Uniterm. It will not return until
 164 * a response is available, or a disconnect is detected */
 165 if (uniterm_conn.TransSend(id) == 0) {
 166 /* Disconnect detected, return an appropriate error condition!
 167 * This should really never happen though... */
 168 response.put("code", "DENY");
 169 response.put("u_errorcode", "CONN_ERROR");
 170 response.put("verbiage", "Connection to Uniterm failed:"
 171 + uniterm_conn.ConnectionError());
 172 return response;
 173 }
 174
 175 /* Save the response parameters from the Uniterm into a
 176 * HashTable as our function prototype states. */
 177 String[] keys = uniterm_conn.ResponseKeys(id);
 178 for (int i=0; i < keys.length; i++) {
 179 response.put(keys[i], uniterm_conn.ResponseParam(id, keys[i]));
 180 }
 181
 182 /* Free up some memory by purging unneeded data */
 183 uniterm_conn.DeleteTrans(id);
 184
 185 return response;
 186 }
 187
 188
 189 /*! Tell Uniterm to shutdown. Since we start it up,
 190 * we should make sure we turn it off prior to exiting otherwise
 191 * the user will be prompted with an error message stating the
 192 * Uniterm is already running on the next execution
 193 * of this application!
 194 * \param[in] uniterm_conn Initialized connection to Uniterm
 195 * as returned by uniterm_connect()
 196 */
 197 static void uniterm_shutdown(MONETRA uniterm_conn)
 198 {
 199 Hashtable mparams = new Hashtable<String,String>();
 200 mparams.put("u_action", "shutdown");
 201 uniterm_sendrequest(uniterm_conn, mparams);
 202 }
 203

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 72

 204
 205 /*! Main entry point to this application to be executed */
 206 public static void main(String[] args)
 207 {
 208 MONETRA uniterm_conn;
 209 StringBuilder errorstr = new StringBuilder();
 210 Hashtable<String,String> response;
 211 String ticket;
 212
 213 /* Step1: Launch Uniterm */
 214 uniterm_launch();
 215 System.out.println("Uniterm Launched");
 216
 217 /* Step2: Connect to Uniterm */
 218 uniterm_conn = uniterm_connect(errorstr);
 219 if (uniterm_conn == null) {
 220 System.out.println("Failure: " + errorstr.toString());
 221 return;
 222 }
 223 System.out.println("Connected to Uniterm");
 224
 225 /* Step3: Send a txnrequest to Uniterm */
 226 Hashtable<String,String> mparams = new Hashtable<String,String>();
 227 /* Append the parameters for the txnrequest */
 228 mparams.put("username", monetra_user);
 229 mparams.put("password", monetra_pass);
 230 mparams.put("u_action", "txnrequest");
 231
 232 mparams.put("u_devicetype", "ingenico_rba");
 233 mparams.put("u_device", "USB");
 234
 235 /* Append the parameters for the transaction that will also get passed
 236 * to Monetra such as the 'action', 'amount', etc. as described in the
 237 * Monetra Client Interface Protocol Specification */
 238 mparams.put("action", "sale");
 239 mparams.put("amount", "12.00");
 240 mparams.put("ordernum", "123456");
 241 mparams.put("comments", "u_txnrequest");
 242
 243 response = uniterm_sendrequest(uniterm_conn, mparams);
 244 if (!response.get("code").equalsIgnoreCase("AUTH")) {
 245 System.out.println("Transasction failed.");
 246 } else {
 247 System.out.println("Transasction SUCCESSFUL!");
 248 }
 249
 250 /* Print out all the response key/value pairs ... */
 251 for (String key : response.keySet()) {
 252 String value = response.get(key);
 253 System.out.println("\t" + key + " = " + value);
 254 }
 255
 256 /* NOTE: No real reason to exit here ... we could just keep running
 257 * Step 3 all day long as long as you keep the uniterm_conn handle.
 258 * No reason to keep disconnecting and reconnecting, or
 259 * starting/stopping the Uniterm.
 260 */
 261

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 73

 262 /* Step4: Cleanup */
 263 uniterm_shutdown(uniterm_conn);
 264
 265 /* Connections will be automatically closed when the uniterm_conn
 266 * initialized classe is closed by the destructor/garbage
 267 * collector */
 268 }
 269
 270 }
 271
 272

C.4 PHP using libmonetra

 1 <?php
 2 /* Monetra Uniterm example program in PHP
 3 *
 4 * Depends on the libmonetra PHP native API
 5 *
 6 * Implemented based on the Monetra Uniterm Guide in conjunction with the
 7 * Monetra Client Interface Protocol Specification
 8 *
 9 * Please contact support@monetra.com with any questions
 10 */
 11 error_reporting(E_ALL);
 12 require_once("libmonetra.php");
 13
 14 /* Monetra Connectivity Information
 15 * NOTE: This is currently pointing to our Test Server that you may
 16 * use for initial testing if desired. Obviously for production,
 17 * or testing with encrypted card readers, you need to point
 18 * this to your local Monetra server and the username/password
 19 * you configured there. Please take note of the restrictions
 20 * on the user permissions as documented in the Uniterm Guide.
 21 */
 22 $monetra_host = "testbox.monetra.com";
 23 $monetra_port = 8665;
 24 $monetra_user = "test_retail:public";
 25 $monetra_pass = "publ1ct3st";
 26
 27 /* Uniterm Connectivity Information
 28 * NOTE: this is the default, it is possible to change, but 99%
 29 * of deployments will probably use this uniterm information
 30 * as-is
 31 */
 32 $uniterm_host = "localhost";
 33 $uniterm_port = 8123;
 34
 35 /* Sets the path of the Uniterm executable. Currently using
 36 * the default locations */
 37 if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') {
 38 /* Windows path */
 39 $uniterm_path = "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe";
 40 } else {
 41 /* Unix path */
 42 $uniterm_path = "/usr/local/monetra/bin/monetra_uniterm";

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 74

 43 }
 44
 45
 46 /*! Function to launch Uniterm from the current process.
 47 * If we don't launch it from the current process, it won't be given
 48 * focus! (at least on Windows this is true, until the first
 49 * manual focus is performed by an end-user) */
 50 function uniterm_launch()
 51 {
 52 global $uniterm_path;
 53 if (class_exists("COM")) {
 54 /* Must be running windows */
 55 $WshShell = new COM("WScript.Shell");
 56 $oExec = $WshShell->Run('"' . $uniterm_path . '"', 10, false);
 57 } else {
 58 /* Must be on a Unix system */
 59 system("'" . $uniterm_path . "'" . " > /dev/null 2>&1 &");
 60 }
 61
 62 /* Make sure Uniterm is ready before returning,
 63 * sleep 2s */
 64 sleep(2);
 65 }
 66
 67
 68 /*! Function to connect to an endpoint which uses the standard 'monetra'
 69 * style protocol (so either Monetra itself, or Uniterm)
 70 * \param[in] host Resolvable hostname or IP address to connect to
 71 * \param[in] port Port associated with hostname to establish an SSL
 72 * connection to
 73 * \param[out] errorstr Textual error message if returns null
 74 * \return Initialized connection on success. null on failure
 75 */
 76 function uniterm_connect_host($host, $port, &$errorstr)
 77 {
 78 /* Initialize the Connection */
 79 $conn = M_InitConn();
 80
 81 $errorstr = "";
 82
 83 /* We always want to use an SSL connection to Monetra and Uniterm */
 84 M_SetSSL($conn, $host, $port);
 85
 86 /* Do not verify the SSL certificate, Monetra and Uniterm
 87 * use self-signed certificates by default which cannot be validated.
 88 * The connection is still encrypted, the endpoint just isn't strictly
 89 * validated */
 90 M_VerifySSLCert($conn, false);
 91
 92 /* This makes it so TransSend() will block until a response is
 93 * received from Monetra. Simplifies the API since we will never
 94 * have more than one outstanding transaction per connection in
 95 * this application */
 96 M_SetBlocking($conn, true);
 97
 98 /* Connect! */
 99 if (!M_Connect($conn)) {
 100 $errorstr = M_ConnectionError($conn);

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 75

 101 return null;
 102 }
 103
 104 return $conn;
 105 }
 106
 107
 108 /*! Wrapper function to connect to Uniterm
 109 * \param[out] errorstr Textual error message if returns null
 110 * \return Initialized connection on success. null on failure
 111 */
 112 function uniterm_connect(&$errorstr)
 113 {
 114 global $uniterm_host, $uniterm_port;
 115
 116 $myerror = "";
 117 $conn = uniterm_connect_host($uniterm_host, $uniterm_port, &$myerror);
 118 if ($conn == null) {
 119 $errorstr = "Connection to Uniterm Failed: " . $myerror;
 120 }
 121 return $conn;
 122 }
 123
 124
 125 /*! Request a transaction from Uniterm as documented in the Uniterm Guide.
 126 * The Key/Value pair params are a combination of the Parameters as
 127 * documented in the Uniterm Guide and the Monetra Client Interface Protocol
 128 * Spec.
 129 * \param[in] uniterm_conn Initialized connection to Uniterm as returned by
 130 * uniterm_connect()
 131 * \param[in] params Array of key/value parameters to send to Uniterm
 132 *
 133 * \return Array of string key/value pairs from response. Please refer to the
 134 * Uniterm Guide and Monetra Client Interface Protocol specification
 135 * for the applicable list based on the action being performed.
 136 * "code" and "u_errorcode" are always guaranteed to be returned.
 137 */
 138 function uniterm_sendrequest($uniterm_conn, $params)
 139 {
 140 $response = array();
 141
 142 /* Request a new transaction from libmonetra */
 143 $id = M_TransNew($uniterm_conn);
 144
 145 /* For each item in the params array, add it to the transaction */
 146 foreach ($params as $key => $value) {
 147 M_TransKeyVal($uniterm_conn, $id, $key, $value);
 148 }
 149
 150 /* Send the request to the Uniterm. It will not return until a
 151 * response is available, or a disconnect is detected */
 152 if (!M_TransSend($uniterm_conn, $id)) {
 153 /* Disconnect detected, return an appropriate error condition!
 154 * This should really never happen though... */
 155 $response["code"] = "DENY";
 156 $response["u_errorcode"] = "CONN_ERROR";
 157 $response["verbiage"] = "Connection to Uniterm failed: " .
 158 M_ConnectionError($uniterm_conn);

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 76

 159 return $response;
 160 }
 161
 162 /* Save the response parameters from the Uniterm into a HashTable
 163 * as our function prototype states. */
 164 $keys = M_ResponseKeys($uniterm_conn, $id);
 165 foreach ($keys as $value) {
 166 $response[$value] = M_ResponseParam($uniterm_conn, $id, $value);
 167 }
 168
 169 /* Free up some memory by purging unneeded data */
 170 M_DeleteTrans($uniterm_conn, $id);
 171
 172 return $response;
 173 }
 174
 175
 176 /*! Tell Uniterm to shutdown. Since we start it up,
 177 * we should make sure we turn it off prior to exiting otherwise
 178 * the user will be prompted with an error message stating the
 179 * Uniterm is already running on the next execution
 180 * of this application!
 181 * \param[in] uniterm_conn Initialized connection to Uniterm
 182 * as returned by uniterm_connect()
 183 */
 184 function uniterm_shutdown($uniterm_conn)
 185 {
 186 uniterm_sendrequest($uniterm_conn, array("u_action" => "shutdown"));
 187 }
 188
 189
 190
 191 /* CODE TO EXECUTE ... */
 192
 193 $errorstr = "";
 194
 195 /* Step1: Launch Uniterm */
 196 uniterm_launch();
 197 echo "Uniterm Launched\r\n";
 198
 199 /* Step2: Connect to Uniterm */
 200 $uniterm_conn = uniterm_connect(&$errorstr);
 201 if ($uniterm_conn == null) {
 202 echo "Failure: " . $errorstr . "\r\n";
 203 return;
 204 }
 205
 206 echo "Connected to Uniterm\r\n";
 207
 208
 209 /* Step3: Send a txnrequest to the Uniterm */
 210 $params = array();
 211
 212 /* Append the parameters for the txnrequest */
 213 $params["username"] = $monetra_user;
 214 $params["password"] = $monetra_pass;
 215 $params["u_action"] = "txnrequest";
 216 $params["u_devicetype"] = "ingenico_rba";

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 77

 217 $params["u_device"] = "USB";
 218
 219 /* Append the parameters for the transaction that will also get passed to
 220 * Monetra such as the 'action', 'amount', etc. as described in the Monetra
 221 * Client Interface Protocol Specification */
 222 $params['action'] = 'sale';
 223 $params['amount'] = '12.00';
 224 $params['ordernum'] = '123456';
 225 $params['comments'] = 'u_txnrequest';
 226
 227 $response = uniterm_sendrequest($uniterm_conn, $params);
 228 if (strcasecmp($response["code"], "AUTH") != 0) {
 229 echo "Transaction Failed.\r\n";
 230 } else {
 231 echo "Transaction SUCCESSFUL!\r\n";
 232 }
 233
 234 /* Print out all the response key/value pairs ... */
 235 foreach ($response as $key => $value) {
 236 echo "\t" . $key . " = " . $value . "\r\n";
 237 }
 238
 239 /* NOTE: No real reason to exit here ... we could just keep running
 240 * Step 3 all day long as long as you keep the uniterm_conn handle.
 241 * No reason to keep disconnecting and reconnecting, or
 242 * starting/stopping Uniterm.
 243 */
 244
 245 /* Step4: Cleanup */
 246 uniterm_shutdown($uniterm_conn);
 247
 248 /* Connections will be automatically closed when the uniterm_conn
 249 * initialized connection is closed by the destructor/garbage collector */
 250
 251 ?>
 252
 253

C.5 Microsoft VB.Net using libmonetra

 1 ' Monetra Uniterm example program in VB.Net
 2 '
 3 ' Depends on the libmonetra C# .Net native API (DLL)
 4 '
 5 ' Implemented based on the Monetra Uniterm Guide in conjunction with the
 6 ' Monetra Client Interface Protocol Specification
 7 '
 8 ' Please contact support@monetra.com with any questions
 9
 10 Option Explicit On
 11 Option Strict On
 12
 13 Imports System
 14 Imports System.Collections
 15 Imports System.Diagnostics
 16 Imports System.Threading

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 78

 17 Imports libmonetra
 18
 19 ' On unix, compile using:
 20 ' gmcs /target:library /unsafe libmonetra.cs
 21 ' vbnc2 -r:libmonetra.dll utest.vb
 22
 23 Module Module1
 24 ' Monetra Connectivity Information
 25 ' NOTE: This is currently pointing to our Test Server that you may
 26 ' use for initial testing if desired. Obviously for production,
 27 ' or testing with encrypted card readers, you need to point
 28 ' this to your local Monetra server and the username/password
 29 ' you configured there. Please take note of the restrictions
 30 ' on the user permissions as documented in the Uniterm Guide.
 31 Private Const monetra_host As String = "testbox.monetra.com"
 32 Private Const monetra_port As Integer = 8665
 33 Private Const monetra_user As String = "test_retail:public"
 34 Private Const monetra_pass As String = "publ1ct3st"
 35
 36
 37 ' Uniterm Connectivity Information
 38 ' NOTE: this is the default, it is possible to change, but 99%
 39 ' of deployments will probably use this Uniterm information
 40 ' as-is
 41 Private Const uniterm_host As String = "localhost"
 42 Private Const uniterm_port As Integer = 8123
 43
 44
 45 Private Function uniterm_path As String
 46 Select Case Environment.OSVersion.Platform
 47 Case PlatformID.Win32NT, PlatformID.Win32S, _
 48 PlatformID.Win32Windows, PlatformID.WinCE
 49 Return "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe"
 50 Case Else
 51 Return "/usr/local/monetra/bin/monetra_uniterm"
 52 End Select
 53 End Function
 54
 55
 56 '! Function to launch Uniterm from the current process.
 57 ' If we don't launch it from the current process, it won't be given
 58 ' focus! (at least on Windows this is true, until the first
 59 ' manual focus is performed by an end-user)
 60 Private Sub uniterm_launch()
 61 Dim monetra_uniterm As New Process()
 62 monetra_uniterm.StartInfo.FileName = uniterm_path
 63 monetra_uniterm.StartInfo.CreateNoWindow = True
 64
 65 monetra_uniterm.Start()
 66
 67 ' Make sure Uniterm is ready before returning,
 68 ' Sleep 1000ms (1s)
 69 System.Threading.Thread.Sleep(1000)
 70 End Sub
 71
 72
 73 '! Function to connect to an endpoint which uses the standard 'monetra'
 74 ' style protocol (so either Monetra itself, or Uniterm)

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 79

 75 ' \param[in] host Resolvable hostname or IP address to connect to
 76 ' \param[in] port Port associated with hostname to establish an SSL
 77 ' connection to
 78 ' \param[out] errorstr Textual error message if returns null
 79 ' \return Initialized connection class on success. null on failure
 80 Private Function uniterm_connect_host(ByVal host As String, ByVal port _
 81 As Integer, ByRef errorstr As String) _
 82 As Monetra
 83 ' Initialize the Class
 84 Dim conn As New Monetra
 85
 86 errorstr = ""
 87
 88 ' We always want to use an SSL connection to Monetra and Uniterm
 89 conn.SetSSL(host, port)
 90
 91 ' Do not verify the SSL certificate, Monetra and Uniterm
 92 ' use self-signed certificates by default which cannot be validated.
 93 ' The connection is still encrypted, the endpoint just isn't strictly
 94 ' validated
 95 conn.VerifySSLCert(False)
 96
 97 ' This makes it so TransSend() will block until a response is
 98 ' received from Monetra. Simplifies the API since we will never
 99 ' have more than one outstanding transaction per connection in
 100 ' this application
 101 conn.SetBlocking(True)
 102
 103 ' Connect!
 104 If Not conn.Connect() Then
 105 errorstr = conn.ConnectionError()
 106 Return Nothing
 107 End If
 108
 109 Return conn
 110 End Function
 111
 112
 113 '! Wrapper function to connect to the Uniterm
 114 ' \param[out] errorstr Textual error message if returns null
 115 ' \return Initialized connection class on success. null on failure
 116 Private Function uniterm_connect(ByRef errorstr As String) As Monetra
 117 Dim conn As Monetra
 118 Dim myerror As String = ""
 119 conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror)
 120 If conn Is Nothing Then
 121 errorstr = "Connection to Uniterm Failed: " + myerror
 122 End If
 123
 124 Return conn
 125 End Function
 126
 127 ' Request a transaction from Uniterm as documented in the Uniterm Guide.
 128 ' The Key/Value pair params are a combination of the Parameters as
 129 ' documented in the Uniterm Guide and the Monetra Client Interface
 130 ' Protocol Spec.
 131 ' \param[in] uniterm_conn Initialized connection to the Uniterm
 132 ' as returned by uniterm_connect()

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 80

 133 ' \param[in] mparams Array of key/value parameters to send to Uniterm
 134 ' \return Hashtable of string key/value pairs from response. Please refer
 135 ' to the Uniterm Guide and Monetra Client Interface Protocol
 136 ' specification for the applicable list based on the action being
 137 ' performed. "code" and "u_errorcode" are always guaranteed to
 138 ' be returned.
 139 Private Function uniterm_sendrequest(ByVal uniterm_conn As Monetra, ByVal _
 140 mparams As Hashtable) As Hashtable
 141 Dim id As Integer
 142 Dim response As New Hashtable
 143
 144 ' Request a new transaction from libmonetra
 145 id = uniterm_conn.TransNew()
 146
 147 ' For each item in the params hashtable, add it to the transaction
 148 Dim kv As DictionaryEntry
 149 For Each kv In mparams
 150 uniterm_conn.TransKeyVal(id, CType(kv.Key, String), _
 151 CType(kv.Value, String))
 152 Next kv
 153
 154 ' Send the request to the Uniterm. It will not return until a
 155 ' response is available, or a disconnect is detected
 156 If Not uniterm_conn.TransSend(id) Then
 157 ' Disconnect detected, return an appropriate error condition!
 158 ' This should really never happen though...
 159 response("code") = "DENY"
 160 response("u_errorcode") = "CONN_ERROR"
 161 response("verbiage") = "Connection to Uniterm failed:" _
 162 + uniterm_conn.ConnectionError()
 163 Return response
 164 End If
 165
 166 ' Save the response parameters from Uniterm into a
 167 ' HashTable as our function prototype states. */
 168 Dim keys() As String = uniterm_conn.ResponseKeys(id)
 169 Dim i As Integer
 170 For i = 0 To keys.Length - 1
 171 response(keys(i)) = uniterm_conn.ResponseParam(id, keys(i))
 172 Next i
 173
 174 ' Free up some memory by purging unneeded data
 175 uniterm_conn.DeleteTrans(id)
 176
 177 Return response
 178 End Function
 179
 180
 181 '! Tell Uniterm to shutdown. Since we start it up,
 182 ' we should make sure we turn it off prior to exiting otherwise
 183 ' the user will be prompted with an error message stating the
 184 ' Uniterm is already running on the next execution
 185 ' of this application!
 186 ' \param[in] uniterm_conn Initialized connection to Uniterm
 187 ' as returned by uniterm_connect()
 188 Private Sub uniterm_shutdown(ByVal uniterm_conn As Monetra)
 189 Dim mparams As New Hashtable
 190

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 81

 191 mparams("u_action") = "shutdown"
 192 uniterm_sendrequest(uniterm_conn, mparams)
 193 End Sub
 194
 195 '! Main entry point to this application to be executed
 196 Public Sub Main()
 197 Dim uniterm_conn As Monetra
 198 Dim errorstr As String = ""
 199 Dim response As Hashtable
 200 Dim ticket As String
 201
 202 ' Step1: Launch Uniterm
 203 uniterm_launch()
 204 Console.WriteLine("Uniterm Launched")
 205
 206 ' Step2: Connect to Uniterm
 207 uniterm_conn = uniterm_connect(errorstr)
 208 If uniterm_conn Is Nothing Then
 209 Console.WriteLine("Failure: " + errorstr)
 210 Return
 211 End If
 212 Console.WriteLine("Connected to Uniterm")
 213
 214 ' Step3: Send a txnrequest to Uniterm
 215 Dim mparams As New Hashtable
 216 ' Append the parameters for the ticket request as per the Monetra
 217 ' Uniterm Guide
 218 mparams("username") = monetra_user
 219 mparams("password") = monetra_pass
 220 mparams("u_action") = "txnrequest"
 221 mparams("u_devicetype") = "ingenico_rba"
 222 mparams("u_device") = "USB"
 223
 224 ' Append the parameters for the transaction that will also get passed
 225 ' to Monetra such as the 'action', 'amount', etc. as described in the
 226 ' Monetra Client Interface Protocol Specification
 227 mparams("action") = "sale"
 228 mparams("amount") = "12.00"
 229 mparams("ordernum") = "123456"
 230 mparams("comments") = "u_txnrequest"
 231
 232 response = uniterm_sendrequest(uniterm_conn, mparams)
 233 If StrComp(CType(response("code"), String), "AUTH", _
 234 vbTextCompare) <> 0 Then
 235 Console.WriteLine("Transaction failed.")
 236 Else
 237 Console.WriteLine("Transaction SUCCESSFUL!")
 238 End If
 239
 240 ' Print out all the response key/value pairs ...
 241 Dim kv As DictionaryEntry
 242 For Each kv In response
 243 Console.WriteLine(" " + CType(kv.Key, String) + " = " + _
 244 CType(kv.Value, String))
 245 Next kv
 246
 247 ' NOTE: No real reason to exit here ... we could just keep running
 248 ' Step 3 all day long as long as you keep the uniterm_conn handle.

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 82

 249 ' No reason to keep disconnecting and reconnecting, or
 250 ' starting/stopping Uniterm.
 251
 252 ' Step4: Cleanup
 253 uniterm_shutdown(uniterm_conn)
 254
 255 ' Connections will be automatically closed when the uniterm_conn
 256 ' initialized class is closed by the destructor/garbage
 257 ' collector
 258 End Sub
 259
 260 End Module
 261
 262

C.6 Microsoft VBScript using XML and MSXML2

 1 ' Monetra Uniterm example program in VBScript
 2 '
 3 ' Depends on the MSXML, and Microsoft Scripting Runtime
 4 '
 5 ' Implemented based on the Monetra Uniterm Guide in conjunction with the
 6 ' Monetra Client Interface Protocol Specification
 7 '
 8 ' Please contact support@monetra.com with any questions
 9
 10 Option Explicit
 11
 12 ' Monetra Connectivity Information
 13 Dim monetra_host
 14 Dim monetra_port
 15 Dim monetra_user
 16 Dim monetra_pass
 17
 18 ' Uniterm Connectivity Information
 19 Dim uniterm_host
 20 Dim uniterm_port
 21 Dim uniterm_path
 22
 23
 24 '! Function to launch Uniterm from the current process.
 25 ' If we don't launch it from the current process, it won't be given
 26 ' focus! (at least on Windows this is true, until the first
 27 ' manual focus is performed by an end-user)
 28 Sub uniterm_launch()
 29 Dim objShell
 30 Dim res
 31 Set objShell = CreateObject("Wscript.Shell")
 32 res = objShell.Run("""" & uniterm_path & """", 10, FALSE)
 33
 34 ' Make sure Uniterm is ready before returning,
 35 ' Sleep 1000ms (1s)
 36 WScript.Sleep 1000
 37 End Sub
 38
 39

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 83

 40 '! Function to POST and XML message to a Monetra-like entity
 41 ' (Monetra or the Uniterm) via HTTPS. It will return
 42 ' the key/value pairs from the XML response
 43 '\param[in] host Host to connect to
 44 '\param[in] port Port to connect to (via SSL/HTTPS)
 45 '\param[in] xml String-form XML to post
 46 '\param[out] errorstr If returning False, the error message, typically comms
 47 ' error
 48 '\param[out] myresponse Dictionary of string key/value pairs from the response.
 49 '\return True on successful communication, False if communication failed.
 50 ' Note: True doesn't mean the transaction itself was successful.
 51 Function uniterm_https_post(ByVal host, ByVal port, ByVal xml, ByRef errorstr, _
 52 ByRef myresponse)
 53 Dim xmlhttp
 54 Dim xmldoc
 55
 56 Set xmlhttp = CreateObject("MSXML2.ServerXMLHTTP")
 57
 58 xmlhttp.open "POST", "https://" & host & ":" & port, False
 59 xmlhttp.setOption 2, 13056
 60 ' Set Timeouts (in milliseconds)
 61 ' DNS: 5s, Connect: 5s, Send: 30s, Receive: 120s
 62 xmlhttp.setTimeouts 5000, 5000, 30000, 120000
 63 xmlhttp.setRequestHeader "Content-Type", "text/xml"
 64
 65 On Error Resume Next
 66 xmlhttp.send xml
 67
 68 If Not Err.Number = 0 Then
 69 errorstr = "HTTPS POST Failed to https://" & host & ":" & port & _
 70 ": " & Err.Description
 71 uniterm_https_post = False
 72 Exit Function
 73 End If
 74
 75 Set xmldoc = CreateObject("Microsoft.XMLDOM")
 76
 77 xmldoc.async = "false"
 78 xmldoc.loadxml(xmlhttp.responseText)
 79
 80 Dim Trans
 81 Set Trans = xmldoc.documentElement.selectSingleNode("Resp").childNodes
 82
 83 Dim kv
 84 For Each kv In Trans
 85 myresponse(kv.nodeName) = kv.text
 86 Next
 87
 88 uniterm_https_post = True
 89 End Function
 90
 91
 92 '! Request a transaction from Uniterm as documented in the Uniterm Guide.
 93 ' The Key/Value pair params are a combination of the Parameters as documented
 94 ' the Uniterm Guide and the Monetra Client Interface Protocol Spec.
 95 ' \param[in] mparams Dictionary of key/value parameters to send to the
 96 ' Uniterm
 97 ' \param[out] errorstr If returning False, the error message, typically comms

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 84

 98 ' error
 99 ' \param[out] myresponse Dictionary of string key/value pairs from response.
 100 ' Please refer to the Uniterm Guide and Monetra Client
 101 ' Interface Protocol specification for the applicable
 102 ' list based on the action being performed. "code" and
 103 ' "u_errorcode" are always guaranteed to be returned.
 104 ' \return True on successful communication, False if communication failed.
 105 ' Note: True doesn't mean the transaction itself was successful.
 106 Function uniterm_sendrequest(ByVal mparams, ByRef errorstr, ByRef myresponse)
 107 Dim xml
 108
 109 xml = "<MonetraTrans><Trans identifier='1'>"
 110
 111 ' For each item in the params dictionary, add it to the transaction
 112 Dim key
 113 For Each key In mparams
 114 xml = xml & "<" & key & ">" & mparams(key) & "</" & key & ">"
 115 Next
 116
 117 xml = xml & "</Trans></MonetraTrans>"
 118
 119 uniterm_sendrequest = uniterm_https_post(uniterm_host, uniterm_port, xml, _
 120 errorstr, myresponse)
 121 End Function
 122
 123
 124 '! Tell Uniterm to shutdown. Since we start it up,
 125 ' we should make sure we turn it off prior to exiting otherwise
 126 ' the user will be prompted with an error message stating the
 127 ' Uniterm is already running on the next execution
 128 ' of this application!
 129 Sub uniterm_shutdown()
 130 Dim myresponse
 131 Dim errorstr
 132 Dim mparams
 133
 134 Set mparams = CreateObject("Scripting.Dictionary")
 135 mparams("u_action") = "shutdown"
 136
 137 uniterm_sendrequest mparams, errorstr, myresponse
 138 ' No need for error checking in this function as we don't
 139 ' care if this fails
 140 End Sub
 141
 142
 143 '! Main entry point to this application to be executed
 144 ' NOTE: This is currently pointing to our Test Server that you may
 145 ' use for initial testing if desired. Obviously for production,
 146 ' or testing with encrypted card readers, you need to point
 147 ' this to your local Monetra server and the username/password
 148 ' you configured there. Please take note of the restrictions
 149 ' on the user permissions as documented in the Uniterm Guide.
 150 monetra_host = "testbox.monetra.com"
 151 monetra_port = 8665
 152 monetra_user = "test_retail:public"
 153 monetra_pass = "publ1ct3st"
 154
 155 ' NOTE: this is the default, it is possible to change, but 99%

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 85

 156 ' of deployments will probably use this Uniterm information
 157 ' as-is
 158 uniterm_host = "localhost"
 159 uniterm_port = 8123
 160 uniterm_path = "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe"
 161
 162 Dim errorstr
 163 Dim mparams
 164 Dim myresp
 165 Dim msg
 166
 167 errorstr = ""
 168
 169 ' Step1: Launch Uniterm
 170 uniterm_launch
 171 MsgBox("Uniterm Launched")
 172
 173
 174 ' Step2: Send txnrequest to Uniterm
 175
 176 Set myresp = CreateObject("Scripting.Dictionary")
 177 Set mparams = CreateObject("Scripting.Dictionary")
 178 ' Append the parameters for the txnrequest
 179 mparams("username") = monetra_user
 180 mparams("password") = monetra_pass
 181 mparams("u_action") = "txnrequest"
 182 mparams("u_devicetype") = "ingenico_rba"
 183 mparams("u_device") = "USB"
 184
 185 ' Append the parameters for the transaction that will also get passed
 186 ' to Monetra such as the 'action', 'amount', etc. as described in the
 187 ' Monetra Client Interface Protocol Specification
 188 mparams("action") = "sale"
 189 mparams("amount") = "12.00"
 190 mparams("ordernum") = "123456"
 191 mparams("comments") = "u_txnrequest"
 192
 193 If Not uniterm_sendrequest(mparams, errorstr, myresp) Then
 194 MsgBox errorstr
 195 WScript.Quit 1
 196 End If
 197
 198 If StrComp(myresp("code"), "AUTH", vbTextCompare) <> 0 Then
 199 msg = "Transaction failed." & vbNewLine
 200 Else
 201 msg = "Transaction SUCCESSFUL!" & vbNewLine
 202 End If
 203
 204 ' Print out all the response key/value pairs ...
 205 Dim key
 206 For Each key In myresp
 207 msg = msg & " " & key & " = " & myresp(key) & vbNewLine
 208 Next
 209
 210 MsgBox (msg)
 211
 212
 213 ' NOTE: No real reason to exit here ... we could just keep running

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 86

 214 ' Step 2 all day long. No reason to keep starting/stopping the
 215 ' Uniterm.
 216
 217 ' Step3: Cleanup
 218 uniterm_shutdown
 219
 220
 221
 222
 223

C.7 Microsoft Visual Basic 6 using libmonetra

 1 Attribute VB_Name = "Module1"
 2 ' Monetra Uniterm example program in VB6
 3 '
 4 ' Depends on the libmonetra C# .Net native API (DLL) (has COM hooks)
 5 '
 6 ' Must add reference to libmonetra and Microsoft Scripting Runtime
 7 '
 8 ' Implemented based on the Monetra Uniterm Guide in conjunction with the
 9 ' Monetra Client Interface Protocol Specification
 10 '
 11 ' Please contact support@monetra.com with any questions
 12
 13 Option Explicit
 14
 15 ' MonetraInformation
 16 Dim monetra_user As String
 17 Dim monetra_pass As String
 18
 19 ' Uniterm Connectivity Information
 20 Dim uniterm_host As String
 21 Dim uniterm_port As Integer
 22 Dim uniterm_path As String
 23
 24 Private Declare Sub Sleep Lib "kernel32.dll" (ByVal dwMilliseconds As Long)
 25
 26 '! Function to launch Uniterm from the current process.
 27 ' If we don't launch it from the current process, it won't be given
 28 ' focus! (at least on Windows this is true, until the first
 29 ' manual focus is performed by an end-user)
 30 Sub uniterm_launch()
 31 Dim id As Double
 32 id = Shell("""" & uniterm_path & """", vbNormalFocus)
 33
 34 ' Make sure Uniterm is ready before returning,
 35 ' Sleep 1000ms (1s)
 36 Sleep (1000)
 37 End Sub
 38
 39
 40 '! Function to connect to an endpoint which uses the standard 'monetra'
 41 ' style protocol (so either Monetra itself, or Uniterm)
 42 ' \param[in] host Resolvable hostname or IP address to connect to
 43 ' \param[in] port Port associated with hostname to establish an SSL

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 87

 44 ' connection to
 45 ' \param[out] errorstr Textual error message if returns null
 46 ' \return Initialized connection class on success. null on failure
 47 Function uniterm_connect_host(ByVal host As String, ByVal port As Integer, _
 48 ByRef errorstr As String) As IMonetra
 49 ' Initialize the Class
 50 Dim conn As IMonetra
 51 Set conn = New Monetra
 52
 53 errorstr = ""
 54
 55 ' We always want to use an SSL connection to Monetra and Uniterm
 56 conn.SetSSL host, port
 57
 58 ' Do not verify the SSL certificate, Monetra and Uniterm
 59 ' use self-signed certificates by default which cannot be validated.
 60 ' The connection is still encrypted, the endpoint just isn't strictly
 61 ' validated
 62 conn.VerifySSLCert False
 63
 64 ' This makes it so TransSend() will block until a response is
 65 ' received from Monetra. Simplifies the API since we will never
 66 ' have more than one outstanding transaction per connection in
 67 ' this application
 68 conn.SetBlocking True
 69
 70 ' Connect!
 71 If Not conn.Connect() Then
 72 errorstr = conn.ConnectionError()
 73 Set uniterm_connect_host = Nothing
 74 Exit Function
 75 End If
 76
 77 Set uniterm_connect_host = conn
 78 End Function
 79
 80
 81 '! Wrapper function to connect to Uniterm
 82 ' \param[out] errorstr Textual error message if returns null
 83 ' \return Initialized connection class on success. null on failure
 84 Function uniterm_connect(ByRef errorstr As String) As IMonetra
 85 Dim conn As IMonetra
 86 Dim myerror As String
 87
 88 myerror = ""
 89 Set conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror)
 90 If conn Is Nothing Then
 91 errorstr = "Connection to Uniterm Failed: " & myerror
 92 End If
 93 Set uniterm_connect = conn
 94 End Function
 95
 96
 97 ' Request a transaction from Uniterm as documented in the Monetra Uniterm
 98 ' Guide. The Key/Value pair params are a combination of the Parameters as
 99 ' Uniterm Guide and the Monetra Client Interface Protocol Spec.
 100 ' \param[in] uniterm_conn Initialized connection to Unitermas returned by
 101 ' connect_to_uniterm()

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 88

 102 ' \param[in] mparams Dictionary of key/value parameters to send to
 103 ' Uniterm
 104 ' \return Dictionary of string key/value pairs from response. Please refer
 105 ' to the Uniterm Guide and Monetra Client Interface Protocol
 106 ' specification for the applicable list based on the action being
 107 ' performed. "code" and "u_errorcode" are always guaranteed to
 108 ' be returned.
 109 Function uniterm_sendrequest(ByVal uniterm_conn As IMonetra, _
 110 ByVal mparams As Dictionary) _
 111 As Dictionary
 112 Dim id As Integer
 113 Dim myresponse As New Dictionary
 114
 115 ' Request a new transaction from libmonetra
 116 id = uniterm_conn.TransNew()
 117
 118 ' For each item in the params dictionary, add it to the transaction
 119 Dim key
 120 For Each key In mparams
 121 uniterm_conn.TransKeyVal id, key, mparams(key)
 122 Next key
 123
 124 ' Send the request to the Uniterm. It will not return until a
 125 ' response is available, or a disconnect is detected
 126 If Not uniterm_conn.TransSend(id) Then
 127 ' Disconnect detected, return an appropriate error condition!
 128 ' This should really never happen though...
 129 myresponse("code") = "DENY"
 130 myresponse("u_errorcode") = "CONN_ERROR"
 131 myresponse("verbiage") = "Connection to Uniterm failed: " _
 132 & uniterm_conn.ConnectionError()
 133 Set uniterm_sendrequest = myresponse
 134 Exit Function
 135 End If
 136
 137 ' Save the response parameters from the Uniterm into a HashTable
 138 ' as our function prototype states.
 139 Dim keys() As String
 140 keys = uniterm_conn.ResponseKeys(id)
 141 Dim i As Integer
 142 For i = LBound(keys) To UBound(keys)
 143 myresponse(keys(i)) = uniterm_conn.ResponseParam(id, keys(i))
 144 Next i
 145
 146 ' Free up some memory by purging unneeded data
 147 uniterm_conn.DeleteTrans (id)
 148
 149 Set uniterm_sendrequest = myresponse
 150 End Function
 151
 152
 153 '! Tell Uniterm to shutdown. Since we start it up, we should make sure we
 154 ' turn it off prior to exiting otherwise the user will be prompted with an
 155 ' error message stating Uniterm is already running on the next execution
 156 ' of this application!
 157 ' \param[in] uniterm_conn Initialized connection to Uniterm as returned by
 158 ' connect_to_uniterm()
 159 Sub uniterm_shutdown(ByVal uniterm_conn As IMonetra)

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 89

 160 Dim mparams As New Dictionary
 161
 162 mparams("u_action") = "shutdown"
 163 uniterm_sendrequest uniterm_conn, mparams
 164 End Sub
 165
 166
 167 '! Main entry point to this application to be executed
 168 Sub Main()
 169 ' NOTE: This is currently pointing to our Test Server that you may
 170 ' use for initial testing if desired. Obviously for production,
 171 ' or testing with encrypted card readers, you need to point
 172 ' this to your local Monetra server and the username/password
 173 ' you configured there. Please take note of the restrictions
 174 ' on the user permissions as documented in the Uniterm Guide.
 175 monetra_host = "testbox.monetra.com"
 176 monetra_port = 8665
 177 monetra_user = "test_retail:public"
 178 monetra_pass = "publ1ct3st"
 179
 180 ' NOTE: this is the default, it is possible to change, but 99%
 181 ' of deployments will probably use this Uniterm information
 182 ' as-is
 183 uniterm_host = "localhost"
 184 uniterm_port = 8123
 185 uniterm_path = "C:\\Program Files\\Main Street Softworks\\Monetra Uniterm\\monetra_uniterm.exe"
 186
 187 Dim uniterm_conn As IMonetra
 188 Dim errorstr As String
 189 Dim myresp As Dictionary
 190 Dim msg As String
 191
 192 errorstr = ""
 193
 194 ' Step1: Launch Uniterm
 195 uniterm_launch
 196 MsgBox ("Uniterm Launched")
 197
 198 ' Step2: Connect to Uniterm
 199 Set uniterm_conn = uniterm_connect(errorstr)
 200 If uniterm_conn Is Nothing Then
 201 MsgBox ("Failure: " & errorstr)
 202 Exit Sub
 203 End If
 204
 205 MsgBox ("Connected to the Uniterm")
 206
 207 ' Step3: Send a txnrequest to Uniterm
 208 Dim mparams As New Dictionary
 209 ' Append the parameters for the ticket request as per the Uniterm Guide
 210 mparams("username") = monetra_user
 211 mparams("password") = monetra_pass
 212 mparams("u_action") = "txnrequest"
 213 mparams("u_devicetype") = "ingenico_rba"
 214 mparams("u_device") = "USB"
 215
 216 ' Append the parameters for the transaction that will also get passed
 217 ' to Monetra such as the 'action', 'amount', etc. as described in the

UniTerm Code Examples

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide|
CONFIDENTIAL 90

 218 ' Monetra Client Interface Protocol Specification
 219 mparams("action") = "sale"
 220 mparams("amount") = "12.00"
 221 mparams("ordernum") = "123456"
 222 mparams("comments") = "u_txnrequest"
 223
 224 Set myresp = uniterm_sendrequest(uniterm_conn, mparams)
 225 If StrComp(myresp("code"), "AUTH", vbTextCompare) <> 0 Then
 226 msg = "Transaction failed." & vbNewLine
 227 Else
 228 msg = "Transaction SUCCESSFUL!" & vbNewLine
 229 End If
 230
 231 ' Print out all the response key/value pairs ...
 232 Dim key
 233 For Each key In myresp
 234 msg = msg & " " & key & " = " & myresp(key) & vbNewLine
 235 Next key
 236 MsgBox (msg)
 237
 238 ' NOTE: No real reason to exit here ... we could just keep running
 239 ' Step 3 all day long as long as you keep the uniterm_conn handle.
 240 ' No reason to keep disconnecting and reconnecting, or
 241 ' starting/stopping Uniterm.
 242
 243 ' Step4: Cleanup
 244 uniterm_shutdown uniterm_conn
 245
 246 ' Connections will be automatically closed when the uniterm_conn initialized
 247 ' class is cleaned up by the destructor/garbage collector
 248 End Sub
 249
 250
 251

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 91

D PCI Security and Implementation

The below details the various security and PCI requirements and how deployments may
be impacted. Integrators and distributors should read this section prior to any production
deployments.

TOPIC DISCUSSION

Delete sensitive
authentication data stored by
previous payment application
versions.

UniTerm has never stored any sensitive authentication data.

Delete any sensitive
authentication data (pre-
authorization) gathered as a
result of troubleshooting the
payment application.

UniTerm has never stored any sensitive authentication data,
even for troubleshooting purposes.

Securely delete cardholder
data after customer-defined
retention period.

UniTerm never stores cardholder data.

Mask PAN when displayed
so only personnel with a
business need can see the full
PAN.

UniTerm mandates the use of users with the obscured flag,
therefore it is not possible that the full PAN can ever be
returned.

Render PAN unreadable
anywhere it is stored
(including data on portable
digital media, backup media,
and in logs).

UniTerm never stores cardholder data, nor does it have its
own logging facilities.

Protect keys used to secure
cardholder data against
disclosure and misuse.

UniTerm never stores cardholder data and therefore does not
utilize keys.

Implement key-management
processes and procedures for
cryptographic keys used for
encryption of cardholder data.

UniTerm never stores cardholder data and therefore does not
utilize keys.

Implement secure key-
management functions.

UniTerm never stores cardholder data and therefore does not
utilize keys.

Provide a mechanism
to render irretrievable
cryptographic key material
or cryptograms stored by the
payment application.

UniTerm never stores cardholder data and therefore does not
utilize keys.

Use unique user IDs and
secure authentication for

UniTerm does not provide or facilitate administrative access.

PCI Security and Implementation

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 92

administrative access and
access to cardholder data.

Use unique user IDs and
secure authentication for
access to PCs, servers, and
databases with payment
applications.

UniTerm does not provide or facilitate administrative or
remote access.

Implement automated audit
trails.

UniTerm does not provide its own logging facilities, instead
all requests are sent to Monetra which logs and maintains the
audit trails on behalf of UniTerm.

Facilitate centralized logging. Since UniTerm sends all requests and metadata to Monetra,
Monetra is responsible for facilitating centralized logging.

Implement and communicate
application versioning
methodology.

Please see the Versioning section.

Securely implement wireless
technology.

UniTerm is not designed to use or facilitate the use of wireless
technologies.

Secure transmissions of
cardholder data over wireless
networks.

UniTerm is not designed to use or facilitate the use of wireless
technologies.

Provide instructions for
secure use of wireless
technology.

Integrators should ensure they secure any wireless
technologies in use in compliance with the requirements in
PA-DSS Requirement 6.3

Use only necessary and
secure services, protocols,
components and dependent
software and hardware,
including those provided by
third parties.

UniTerm communicates only via SSL/TLS using proprietary
protocols.

Store cardholder data only on
servers not connected to the
Internet

UniTerm never stores cardholder data.

Implement two-factor
authentication for all remote
access to payment application
that originates from outside
the customer environment.

UniTerm never stores cardholder data, nor does it provide
access to cardholder data. Integrators must ensure that all
remote access originating from outside the customer's network
to a payment application (Monetra) must use two-factor
authentication.

Securely deliver remote
payment application updates.

Integrators must securely deliver updates to UniTerm in
compliance with the Deployment section. Deployments must
be done in accordance with the PCI PA-DSS requirement
10.3.

Securely implement remote-
access software.

Main Street Softworks will never reach out to a remote
customer network. If an Integrator chooses to support remote

PCI Security and Implementation

Copyright © 2015 Main Street Softworks, Inc. | UniTerm Integration and Deployment Guide 93

access for management they must do so in compliance with
PA-DSS Requirement 10.3.2.

Secure transmissions of
cardholder data over public
networks.

UniTerm communicates only via SSL/TLS using proprietary
protocols.

Encrypt cardholder data sent
over end-user messaging
technologies.

UniTerm does not facilitate or support the use of end-user
messaging technologies.

Encrypt non-console
administrative access.

UniTerm does not provide or facilitate administrative access.

	UniTerm Integration and Deployment Guide
	Table of Contents
	1 Revision History
	2 UniTerm System
	2.1 Overview
	2.2 UniTerm Architecture
	2.3 Design Decisions

	3 UniTerm Integration and Deployment Overview
	3.1 Deployment
	3.2 Versioning
	3.2.1 Version Scheme
	3.2.2 Wildcard Versioning

	3.3 Licensing
	3.3.1 Registration
	3.3.2 Device Definition
	3.3.3 Management

	3.4 Starting UniTerm
	3.4.1 Command Line Options

	3.5 Multiple Instances
	3.6 Swapping Devices
	3.7 Configuration Files
	3.7.1 Location
	3.7.2 Parameters

	3.8 Communication
	3.8.1 Network Communication
	3.8.2 Android Service Communication

	3.9 Shutting Down UniTerm
	3.10 Required User Permissions

	4 UniTerm Protocol
	4.1 Overview
	4.2 UniTerm Request Parameters
	4.3 UniTerm Response Parameters
	4.4 UniTerm Error Codes

	5 EMV transactions with UniTerm
	5.1 Transaction Flow and Prompting
	5.1.1 Swipe prompts to insert
	5.1.2 Tap prompts to insert
	5.1.3 Insert prompts to swipe
	5.1.4 PIN required on Credit Cards
	5.1.5 Signature not requested
	5.1.6 Tap transaction run as MSR on chip card, no insert requested
	5.1.7 Immediate decline without contacting the processor

	5.2 Common questions
	5.2.1 How do I add a gratuity/tip to a transaction?

	6 UniTerm Protocol Examples
	6.1 EMV Transaction [device load]
	6.1.1 Uniterm Request Data
	6.1.2 Uniterm Response Data

	6.2 EMV Transaction [Interac]
	6.2.1 Uniterm Request Data
	6.2.2 Uniterm Response Data

	6.3 Pin Debit (forced) Transaction Request
	6.3.1 Uniterm Request Data
	6.3.2 GUI output
	6.3.3 Uniterm Response Data

	7 UniTerm Test Application
	8 UniTerm Code Examples
	9 UniTerm Point of Interaction Devices
	9.1 Supported POI Devices
	9.1.1 Ingenico RBA information
	9.1.1.1 Communication Methods
	9.1.1.2 Device configuration
	9.1.1.3 Hardware Information
	9.1.1.4 Forms and Images
	9.1.1.5 First Data TransArmor RSA Encryption

	9.1.2 Verifone VX XPI information
	9.1.2.1 Communication Methods
	9.1.2.2 Device configuration

	9.1.3 Ingenico CPX/uCPX information
	9.1.3.1 Communication Methods

	10 Certifications and Device Configurations
	10.1 Certification List
	10.2 Configuration Definitions

	A UniTerm Device Loading
	B EMV Receipt Requirements
	B.1 Receipt content
	B.1.1 Base receipt content

	B.2 Receipt Data Returned by UniTerm
	B.3 Receipt Data NOT Returned by UniTerm
	B.4 Signature Line Requirements
	B.5 Merchant vs Customer Copy
	B.6 Moneris Requirements
	B.7 Receipt Examples
	B.7.1 EMV Insert, Signature Required
	B.7.1.1 Uniterm Response Data
	B.7.1.2 Example Receipt

	B.7.2 EMV Insert, PIN Verified
	B.7.2.1 Uniterm Response Data
	B.7.2.2 Example Receipt

	B.7.3 EMV Insert, No CVM
	B.7.3.1 Uniterm Response Data
	B.7.3.2 Example Receipt

	B.7.4 EMV Insert, Card Decline
	B.7.4.1 Uniterm Response Data
	B.7.4.2 Example Receipt

	B.7.5 EMV Insert, Card Removed (Decline)
	B.7.5.1 Uniterm Response Data
	B.7.5.2 Example Receipt

	B.7.6 EMV Insert, Interac
	B.7.6.1 Uniterm Response Data
	B.7.6.2 Example Receipt

	B.7.7 EMV Contactless, Interac Flash Decline
	B.7.7.1 Uniterm Response Data
	B.7.7.2 Example Receipt

	B.7.8 EMV Contactless, Decline
	B.7.8.1 Uniterm Response Data
	B.7.8.2 Example Receipt

	C UniTerm Code Examples
	C.1 Microsoft C# using libmonetra
	C.2 Microsoft C# using XML and HttpWebRequest
	C.3 Java using libmonetra
	C.4 PHP using libmonetra
	C.5 Microsoft VB.Net using libmonetra
	C.6 Microsoft VBScript using XML and MSXML2
	C.7 Microsoft Visual Basic 6 using libmonetra

	D PCI Security and Implementation

