
UniTerm® Payment Interface Application

UniTerm Integration and Deployment Guide

Revision: 9.12.1
Publication date January 21, 2021

Copyright © 2021 Monetra Technologies, LLC

UniTerm Integration and Deployment Guide
Monetra Technologies, LLC

Revision: 9.12.1

Publication date January 21, 2021
Copyright © 2021 Monetra Technologies, LLC

Legal Notice

The information contained herein is provided As Is without warranty of any kind, express or implied, including but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. There is no warranty that the information or the use thereof does not infringe a
patent, trademark, copyright, or trade secret.

Monetra Technologies, LLC. SHALL NOT BE LIABLE FOR ANY DIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, WHETHER RESULTING FROM BREACH OF
CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, OR OTHERWISE, EVEN IF MONETRA TECHNOLOGIES HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. MONETRA TECHNOLOGIES RESERVES THE RIGHT TO MAKE CHANGES
TO THE INFORMATION CONTAINED HEREIN AT ANYTIME WITHOUT NOTICE. NO PART OF THIS DOCUMENT MAY BE
REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, FOR ANY PURPOSE,
WITHOUT THE EXPRESS WRITTEN PERMISSION OF Monetra Technologies, LLC.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide iii

Table of Contents
1. Revision History .. 1
2. UniTerm System .. 8

2.1. Overview ... 8
2.2. UniTerm Architecture .. 8
2.3. Design Decisions ... 9
2.4. Store and Forward/Stand-In processing ... 9

2.4.1. Stand-In eligibility rules .. 10
2.5. ChipTab® - EMV Bar Tab support ... 11

2.5.1. ChipTab eligibility rules .. 12
3. UniTerm Integration and Deployment Overview .. 13

3.1. Deployment ... 13
3.2. Versioning ... 14

3.2.1. Version Scheme .. 14
3.2.2. Wildcard Versioning ... 15

3.3. Licensing ... 15
3.3.1. Registration ... 15
3.3.2. Device Definition .. 15
3.3.3. Management ... 16

3.4. Starting UniTerm ... 16
3.4.1. Command Line Options ... 16

3.5. Multiple Instances .. 16
3.6. Swapping Devices .. 17
3.7. Communication to UniTerm from Integration .. 17

3.7.1. Network Communication ... 18
3.7.2. Android Service Communication ... 18
3.7.3. Apple iOS ... 18

3.8. Shutting Down UniTerm .. 22
3.9. User Setup Permissions and Requirements .. 22
3.10. Linux OS device access permissions ... 23

3.10.1. HID devices .. 23
3.10.2. Serial devices .. 23

3.11. Android - Embedding ... 24
3.11.1. HID Support ... 24

3.12. Deploying UniTerm in a public-facing environment ... 25
4. Configuration ... 27

4.1. Configuration Files .. 27
4.2. Configuration Parameters ... 27

4.2.1. Section: [payment_server] ... 28
4.2.2. Section: [uniterm] ... 29
4.2.3. Section: [device_server] ... 33
4.2.4. Section: [db] ... 34
4.2.5. Section: [logging] ... 37
4.2.6. Section: [tab] ... 38
4.2.7. Section: [standin] ... 39
4.2.8. Section: [blacklist] ... 40

5. UniTerm Protocol ... 42

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide iv

5.1. Overview ... 42
5.2. UniTerm Request Parameters ... 43

5.2.1. UniTerm Actions (u_action) ... 49
5.2.2. System Information Actions (u_sysinfo) ... 55
5.2.3. Stand In Actions (u_standin) .. 56
5.2.4. ChipTab Actions (u_tab) .. 58
5.2.5. Interchange/Rate Qualification Requirements .. 60
5.2.6. Shared Secret/HMAC handling .. 62

5.3. UniTerm Response Parameters ... 62
5.4. UniTerm Error Codes .. 65
5.5. UniTerm Status Codes ... 66
5.6. UniTerm Representment Codes .. 67
5.7. Tip Prompting ... 68
5.8. Cash Back Prompting .. 68
5.9. EBT Processing ... 69
5.10. QuickChip ... 69
5.11. Pay at the Table ... 70
5.12. Parking: Card-In/Card-Out Entry and Exit Gates .. 71

5.12.1. Considerations ... 72
5.13. Signature Capture ... 72

6. EMV transactions with UniTerm ... 73
6.1. Transaction Flow and Prompting .. 73

6.1.1. Swipe prompts to insert ... 73
6.1.2. Tap prompts to insert .. 73
6.1.3. Insert prompts to swipe ... 73
6.1.4. PIN required on Credit Cards .. 74
6.1.5. Signature not requested ... 74
6.1.6. Tap transaction run as MSR on chip card, no insert requested 74
6.1.7. Immediate decline without contacting the processor 74

6.2. Common questions .. 74
6.2.1. How do I add a gratuity/tip to a transaction? ... 74
6.2.2. What industries are certified for EMV? .. 75

7. Storage, Key Management, and Logging ... 76
7.1. Database Storage, Security, and Key Management ... 76
7.2. Logging ... 77
7.3. External Data Storage .. 77

8. UniTerm Protocol Examples ... 78
8.1. EMV Transaction [device load] .. 78

8.1.1. UniTerm Request Data .. 78
8.1.2. UniTerm Response Data .. 78

8.2. EMV Transaction [Interac] ... 79
8.2.1. UniTerm Request Data .. 79
8.2.2. UniTerm Response Data .. 79

8.3. Transaction Request with EBT Food Stamp optional .. 80
8.3.1. UniTerm Request Data .. 80
8.3.2. GUI output ... 81
8.3.3. UniTerm Response Data .. 81

9. UniTerm Test Application .. 82
10. UniTerm Code Examples .. 83

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide v

11. UniTerm Hardware Devices (Point of Interaction Devices) ... 84
11.1. Supported POI Devices .. 84

11.1.1. Ingenico RBA and UPP information ... 85
11.1.2. Ingenico TCPX information .. 92
11.1.3. BBPos family information ... 92
11.1.4. ID Tech Augusta and Spectrum Pro (NGA) .. 93
11.1.5. ID Tech VP5300 information ... 93
11.1.6. Equinox Luxe information ... 94

11.2. Obtaining Devices .. 97
11.2.1. Where to source devices with appropriate loads and keys 97

12. Certifications and Device Configurations ... 99
12.1. Certification List .. 99
12.2. Configuration Definitions ... 104

13. UniTerm supported peripherals .. 106
A. UniTerm Device Loading ... 107
B. HMAC Algorithm .. 109
C. Pre-formatted Receipt Processing .. 110

C.1. Request parameters .. 110
C.2. Supported Languages ... 111
C.3. Response Data ... 111

C.3.1. Plain Text format .. 113
C.3.2. HTML format ... 113
C.3.3. XML and JSON format ... 119

D. EMV Receipt Requirements (for Manual Receipt formatting) 121
D.1. Receipt content ... 121

D.1.1. Base receipt content .. 121
D.2. Receipt Data Returned by UniTerm ... 123
D.3. Receipt Data NOT Returned by UniTerm ... 126
D.4. Signature Line Requirements ... 127
D.5. Merchant vs Customer Copy .. 127
D.6. Moneris Requirements ... 127
D.7. Receipt Examples .. 128

D.7.1. EMV Insert, Signature Required .. 128
D.7.2. EMV Insert, PIN Verified ... 131
D.7.3. EMV Insert, No CVM .. 134
D.7.4. EMV Insert, Card Decline .. 137
D.7.5. EMV Insert, Card Removed (Decline) ... 139
D.7.6. EMV Insert, Interac .. 141
D.7.7. EMV Contactless, Interac Flash Decline .. 144
D.7.8. EMV Contactless, Decline .. 146

E. UniTerm Code Examples .. 148
E.1. Microsoft C# using libmonetra ... 148
E.2. Microsoft C# using XML and HttpWebRequest .. 152
E.3. Java using libmonetra .. 157
E.4. PHP using libmonetra .. 161
E.5. Microsoft VB.Net using libmonetra .. 166
E.6. Microsoft VBScript using XML and MSXML2 .. 170
E.7. Microsoft Visual Basic 6 using libmonetra .. 174

F. PCI Security and Implementation .. 179

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 1

1 Revision History

Version Date Changes

v9.12.1 2021-01-21 • Add new BBPOS TSYS certification.
• Add BBPOS WisePad 3S information.

v9.12.0 2020-12-09 • Update port configuration parameter to allow multiple ports.
• Add proxy_port configuration parameter to support HAProxy

proxy protocol.
• New EXTERNALSELECT u_flags for enabling external

selection for devices without screens/buttons.
• New externalselect u_action for specifying external

selection choice.
• Add new Ingenico UPP First Data certification.
• Add new Ingenico UPP Global Payments certification.
• Add new Ingenico UPP Heartland certification.
• Update Ingenico UPP NCR certification.

v9.11.0 2020-10-19 • Update Ingenico recommended firmware versions.
• Add new Equinox First Data certification.
• Add new IDTech VP5300 First Data certification.
• Document new event_loop configuration parameter.

v9.10.0 2020-08-03 • Ingenico UPP recommended version is now 6.8X.04.
• Add Tsys Ingenico Tetra/UPP certification.
• Add missing u_flags of NOEXPDATE.

v9.9.3 2020-04-29 • Minimum RBA version is now 23.X.44 due to disclosed
security vulnerability in RBA.

v9.9.0 2020-03-30 • Addition of new u_action=devicecondition for printer
and cash drawer status.

• Addition of new u_action=opencashdrawer to trigger
a cash drawer open (typically connected through a receipt
printer).

• Addition of new u_action=readbarcode to read a barcode.
• Addition of new u_flag of persistdevice to hold a device

open rather than open/close for each request.
• Addition of new u_errorcode of UNSUPPORTED_ACTION to

denote the requested action was not supported by the device.
• Addition of new line_len for print devices to indicate

characters per line.
• Vantiv (now Worldpay) Ingenico Tetra certification.
• Increment Ingenico Tetra UPP recommended version.

v9.8.0 2020-02-17 • Update supported Ingenico UPP versions
• Update information for use of sharedsecret_mc
• Add unauthenticated_whitelist config parameter
• Add master_command_whitelist config parameter
• Add enable_modifyconfig config parameter
• Add ipclientlist action

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 2

Version Date Changes
• Add sysinfo action
• Add missing Heartland and Tsys certifications

v9.7.0 2019-12-09 • Update supported Ingenico UPP versions
• Update supported Ingenico RBA versions for new kernel
• List NCRPS/JetPay certifications
• New u_flag of NOSTANDIN
• Removal of ability to return card BIN (first 6)
• Additional fields can be edited for stored transactions

v9.6.0 2019-11-11 • Support for u_long_message for reqconfirm
• Recommended RBA version is now 23.0.44

v9.5.0 2019-09-23 • Remove Verifone XPI support, certifications have expired.
• TLSv1.3 support.
• ReST API Support.
• Remove u_deviceidlemessage
• txnfinish can now change the action to sale if txnstart

was preauth

v9.4.1 2019-08-20 • Better document Android HID support

v9.4.0 2019-07-08 • A new UniTerm action of txnquick has been added which
acts like txnrequest, but uses the device flow for Quick Chip
like txnstart + txnfinish to allow early removal of the
card.

• Support "standalone" mode of operation for Ingenico devices
where the device is not API-controllable but instead acts as
a standalone terminal that can only be interacted with via the
device menus. Terminal must connect using IPClient mode.

• TCPX firmware support on Ingenico terminals for Canada.
• Tsys RBA recertification.
• Moneris TCPX certification.
• RBA recommended firmware version updates.
• UPP recommended firmware version updates.

v9.3.0 2019-04-15 • Wording changes as requested by PCI PA-DSS auditors for
clarity

• Heartland Ingenico RBA certification listing
• Update recommended RBA version
• Dynamically generated approval code support for Stand-In

requests
• Receipt types can now take a pipe separated list of types to

allow multiple receipt formats to be returned simultaneously
• Replace [monetra] with [payment_server] in

configuration section. Fallback exists for older ini files.

v9.2.0 2019-01-18 • Receipt updates for Moneris
• Multiple TLS certificates can be loaded to support different

hostnames (SNI)
• New u_action of expirecached
• US Debit rules relaxed for Stand-In processing

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 3

Version Date Changes

v9.1.0 2018-12-13 • Company Legal name changed from Main Street Softworks Inc
to Monetra Technologies LLC

• Removal of ENCRYPTEDONLY u_flags, functionality moved
to Monetra merchant account setup.

• JSON over HTTPS is now an available communication
mechanism.

• Note that PNG signatures can now be requested from Monetra
• Add back u_cardclass as a response parameter as it is used

to differentiate EBTCB vs EBTFS which are sub classes of the
EBT card type.

• Best practices guidance for Parking systems Card-In/Card-Out
Entry and Exit gates

• New reqinput entry type of tip.
• New CARDMETA u_flags option for Global BIN checking.
• Pre-formatted receipts can now be returned in responses as

plain text (with user-specified width), HTML, XML, and JSON
• Update RBA recommended versions
• List ID Tech and Ingenico UPP devices, as well as new

certifications

v9.0.2 2018-05-29 • Removal of some references that no longer applies to UniTerm
v9.

• Further clarify stand-in configuration.

v9.0.0 2018-04-10 • Note that UniTerm v9 requires access to Monetra v8.7 or higher
to operate.

• New EMV certifications listed.
• Apple iOS MFi (Made for iOS) no longer supported as if it was

a BlueTooth device, new MFi device type.
• Addition of Bluetooth LE communication method.
• Removed uniterm.ini configuration items which are instead

configured Monetra server-side now:
• tippercent

• cashbackamount

• cashbackmax

• New uniterm.ini configuration settings (SSL/TLS, shared
secret, database, logging, tab, stand-in, blacklist).

• New feature of Stand-In/Store and Forward processing added.
• New feature of ChipTab/Bar Tab processing added.
• Document new storage/database, key management, and logging

facilities.
• Shared Secret usage has changed to using HMAC-SHA256,

added new section for clarity.
• Removal of u_cardclass as it is not possible to do with EMV

as the terminal will auto-select the best AID. POS vendors
should not have a "tender type" button in their POS but instead
rely on the response from UniTerm.

• Update of PCI PA-DSS Security cross-reference appendix.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 4

Version Date Changes
• List BBPos/Anywhere Commerce device

v8.4.0 2017-08-21 • signaturetimeoutconfiguration parameter for determining
the action to take when a user forgets to sign.

• New EMV Kernel for Ingenico RBA with new certifications
• Updates to the unsupportedcard configuration value with

additional options.
• Update u_status codes to be more descriptive, this

removes CARD as a response parameter in order to add further
clarification on card presentation being requested.

• Add u_represent reason field for status requests to indicate a
reason for why card re-presentation is being requested.

• Add cardwait configuration value for [uniterm] to
configure timeout duration for the card prompt (mostly for
unattended environments).

• Add new receipt response parameter rcpt_emv_pinbypass
to indicate the cardholder explicitly requested to bypass pin
entry.

• New Device Server mode, where the Ethernet-connected device
connects outbound to UniTerm (instead of UniTerm initiating
the connection to the device). Connected devices are addressed
by serial number. Supports both unencrypted IP and SSL/TLS.

• u_action=reqinput now allows requesting a zip code
• Add pole display support for use with Quick Chip (txnstart)

transactions.

v8.3.2 2017-04-14 • iOS UniTerm is now available on the iOS App Store.
• Recommended Ingenico RBA version is now 19.0.8.

v8.3.0 2017-03-06 • New First Data certification for EMV Debit and EMV
Contactless

• Update recommended RBA versions.
• Add new cdcvm card holder verification method response.

v8.2.5 2017-01-19 • Additional clarifications for use of the iOS framework.
• Add DELAYRESPONSE u_flags.
• Add fullscreen modifier to guimode configuration.

v8.2.4 2016-12-21 • Clarifications for use of the iOS framework.
• Various other clarifications and fixes for typos.
• Addition of u_flowflags response parameter.

v8.2.3 2016-12-01 • Add serialquirks flags for uniterm.ini

v8.2.2 2016-11-15 • Add u_foodamount value of maybe for txnstart.
• u_cardclass=EBT has been split into EBTFS and EBTCB for

clarity.
• Add [uniterm] configuration parameter returnbin to

return the first 6 digits (in addition to the last 4 digits) of a card
number in the txnstart response message so transaction
decisions can be made (e.g. health benefits qualification).

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 5

Version Date Changes

v8.2.0 2016-10-17 • All references to monetra_uniterm have been changed to just
uniterm, including executable names and paths.

• Added EMV industry question
• Split out u_action values and descriptions into their own

section for clarity.
• GUI can now use Device Licensing when passing a u_flags

or GUIONLY while also passing valid values for device and
devicetype. This prevents requiring duplicate licensing for
workstations with physical devices that sometimes perform gui
card entry.

• Ingenico RBA recommended version is now 18.04
• Linux HID device permission section has been added
• Asynchronous processing (multiplexing/interleaving

transactions on a single connection) is now supported.
• QuickChip overview.
• USB is now known as HID, all usb references changed,
hidlist report parameters and u_device format have also
changed

• New commands (u_action values):
• txnstart

• txnfinish

• deviceupload

• deviceprint

• devicereboot

• reqsignature

• reqconfirm

• reqinput

Associated request parameters for these new commands:
• u_b64data

• u_filename

• u_text

• u_message

• u_inputtype

Associated response parameters for these new commands:
• u_needreboot

• u_confirmed

• u_input

• u_signature

• Interchange requirement information.
• New/Changed configuration parameters:

• [monetra] persist_conn - Default changed to "no"
• [uniterm] tippercent

• [uniterm] cashbackamount

• [uniterm] cashbackmax

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 6

Version Date Changes
• Note that uniterm.ini isn't actually distributed anymore,

instead a template of uniterm_example.ini is provided.
• New u_flags:

• NOTIP

• NOCASHBACK

• NOCONFIRM

• NOSIGNATURE

• Section added on Tip processing, including the addition of the
u_tip response parameter.

• Section added on Cash Back processing, including the addition
of the u_cashback response parameter.

• Section added on EBT processing, including the addition of the
u_foodamount request parameter and u_wasfood response
parameter.

• The OS-provided SSL/TLS root trust list is now automatically
loaded and there is no longer an included caroots directory.

• In Deployment, discuss the new standalone installers provided.
• Update devicetypes functionality values.
• Update Apple iOS integration information for the framework

variant.
• New Ingenico RBA form of UTASEL.K3Z used.
• Add guidance for Pay at the Table.
• Add information about automatic signature capture.
• Note that CPX/uCPX is limited to UniTerm v8.0, and not

supported on v8.2
• Configuration parameter nosigfloor has been changed to
nocvmfloor

• modifyconfig parameters now use "." as a delimiter instead
of "/"

• u_action=status request now returns a u_status machine-
readable status code

• Add section on updating RBA firmware.
• Add skipped rcpt_emv_cvm return value

v8.0.3 2016-03-02 • Note limitation for asynchronous processing (or lack thereof)
• Update status of various certifications
• Add sections relating to iOS support
• Updated device application version support

v8.0.2 2015-11-16 • Update status of various certifications
• Add section on obtaining devices.
• UID_NOT_FOUND error code addition, and clarify possible
u_errorcode values for status requests.

• Missing required permission of CARDTYPE added.
• Added persist_conn configuration parameter for the
[monetra] section.

• Added deviceinfo transaction type to request information
about the connected device.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 7

Version Date Changes
• Added GIFTPIN u_flags to prompt for PIN entry if a gift

card is used.

v8.0.1 2015-09-28 • Re-word and clarify configuration information for Ingenico
RBA

• Clarify fields can be sent in to pre-populate key entry fields in
GUI mode.

• Receipt should show "CALL ISSUER" for a response code of
"CALL".

• Cardholder Name on receipts can be printed under the signature
line.

• Document how to configure an RBA device for contactless.
• Remove unused monetra_host and monetra_port variables

in example code.
• Add touchscreen mode support via [uniterm] config option

of guimode=touchscreen.
• SSL is no longer a valid communication option for Android.

Only Service communication is allowed.
• Add ssl_auth_key and ssl_auth_cert configuration

parameters for the [monetra] section.
• Add ssl_cert_validate configuration parameter for the
[monetra] section.

• Add ssl_cadir configuration parameter for the [monetra]
section.

• Verifone recommended XPI version updated to 8.24D.
• Ingenico recommended RBA version updated to 15.06.
• Ingenico RBA added support for USB-HID.
• Update receipt examples to the latest generated by UniTerm

Tester.

v8.0.0 2015-08-17 • Initial revision

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 8

2 UniTerm System

2.1. Overview ... 8
2.2. UniTerm Architecture .. 8
2.3. Design Decisions ... 9
2.4. Store and Forward/Stand-In processing ... 9

2.4.1. Stand-In eligibility rules .. 10
2.5. ChipTab® - EMV Bar Tab support .. 11

2.5.1. ChipTab eligibility rules .. 12

2.1 Overview

UniTerm securely handles sensitive cardholder data independent of the merchants application
software. In addition, UniTerm provides a simple consistent interface to multiple payment
acceptance devices such as card readers, pinpads and terminals.

2.2 UniTerm Architecture

The UniTerm module is accessed via its 'Transaction Request' mode, as described below:

A Point of sale application calls UniTerm for txnrequest (such as a sale
transaction request) and includes basic information such as the amount of the

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 9

sale and an order-number. This communication channel or request will NEVER
contain sensitive cardholder data meaning it is out of PCI scope.

B UniTerm communicates with devices (such as pinpads and card readers) to
retrieve sensitive data, depending on request type (step A).

C UniTerm sends the full transaction data-set to the Payment Server for further
processing.

D The Payment Server processes the transaction request (such as a sale) against the
appropriate end point (for example TSYS) and then sends back the response it
receives to the UniTerm module.

E The UniTerm module then returns the transaction response back to the calling
application. This communication channel or request will NEVER contain sensitive
cardholder data meaning it is out of PCI scope.

2.3 Design Decisions

UniTerm is designed to run as an independent application running in a separate address space
from any integrated applications. The design decisions behind this are due to the PCI PA-DSS
and EMV certification requirements, where a clear line can be drawn between the certified
application (UniTerm) and the POS without any ambiguity as to if the POS would fall into
scope. If this clear line was not drawn, the POS may be required to undergo the extremely
intensive and costly EMV Brand Certifications, not to mention fall into scope for PCI PA-
DSS.

Note: Assuming a POS exclusively uses UniTerm to retrieve and process card holder data,
and is guaranteed to not have the capability to retrieve or store card holder data, including
keyed entry in the event of phone orders or similar (which should be requested through
UniTerm instead), then the POS would be considered Out of Scope for PCI PA-DSS as
UniTerm will never relay any sensitive card holder data to the POS.

Note: Due to the nature of iOS, UniTerm is also available as a library under special exception
from Visa, which has stated they will not require the POS vendor on iOS to undergo EMV
Brand or PCI PA-DSS validations when using UniTerm.

2.4 Store and Forward/Stand-In processing

Store and Forward or Stand-In processing is a mechanism to locally approve a transaction
under a configurable dollar amount if an unrecoverable connectivity failure to your processing
institution has occurred. When connectivity is restored, the authorization will be automatically
forwarded to the host for approval. This functionality is only applicable to Credit Card
transactions, and only those that do not require Online PIN as the cardholder verification
method.

Stand-In is primarily designed for short-term outages where real-time approvals are necessary
to the operation of a business. It is disabled by default due to the liability/risk of use.

A stand-in approval puts liability for the transaction on the merchant. A stand-in approval does
not provide any guarantee the merchant will receive the funds. The issuer may decline for a

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 10

number of reasons such as, Insufficient Funds, or a closed card account being presented. Use
stand-in processing at your own risk!

There are a number of configuration options that allow a merchant to specify criteria for which
transaction can be stored. Options such as, number of transactions currently offline, transaction
amount, aggregate approved amount. Please see the uniterm.ini Configuration File section
for additional configuration parameters.

If stand-in approves a transaction when the host is offline, the returned TTID will be prefixed
with a 'U'. This indicates it is a UniTerm TTID and is associated with the UniTerm instance
that returned the approval. This TTID cannot be used with any other system. The TTID can be
used with UniTerm reports to determine the transaction response once forwarded. At which
point the real TTID will be returned. A response key of u_standin=yes will also be returned
if a transaction was a stand-in.

Stored transactions will automatically attempt to be sent online for authorization every 15
minutes. If successfully sent the response will be recorded and can be accessed later by
referencing the UniTerm TTID. Responses will be stored for a configurable number of days
before being purged.

Note: Store and Forward, or Stand-in processing requires additional server-side licensing.
There is a Store and Forward license available for Monetra which allows all registered
UniTerm instances to perform stand-in operations. Otherwise, stand-in processing will
consume CardShield device licenses per UniTerm instance.

Note: Store and Forward, or Stand-in processing was introduced as of UniTerm v9 as an
optional feature.

2.4.1 Stand-In eligibility rules

Not all transactions qualify for stand-in processing. Below you will find a quick reference to
assist in determining why a transaction may not be eligible.

Applicable to all methods of entry:

• Only cards able to be processed using credit card networks are eligible by default. E.g. not
private label gift, EBT, or Pin-Debit. However, as of UniTerm v9.1, it is possible to allow
Pin-Debit transactions to be stored by setting the corresponding flag on the Payment Server
configuration.

• Missing or malformed authorization data (does not pass local edit checks)

EMV-specific failure reasons:

• Online PIN was attempted (unless corresponding flag set in the Payment Server
configuration to allow this)

• ODA (Offline Data Authentication) was not performed (ignored for US Debit)
• ODA (Offline Data Authentication) static or dynamic failed
• Card on terminal exception file
• CDA (Offline combined dynamic data authentication with application cryptogram) failed

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 11

• SDA (Static data authentication) was selected
• Card application expired
• Card application not yet effective
• Cardholder verification was not successful
• Unrecognized Cardholder Verification Method (ignored for US Debit)
• PIN failures such as: limit try exceeded, pin entry device not present or inoperable, pin not

entered (ignored for US Debit)
• Consecutive offline limit exceeded

2.5 ChipTab® - EMV Bar Tab support

Tabs are used to capture card data for later processing. This is for a single transaction and is
not equivalent to tokenizing a card.

Typical use is at a bar where the customer opens a tab and as they order drinks or food the
amount they're spending is added to the tab. Once they're finished and ready to leave the tab is
closed and their card is charged.

This is commonly used in situations where payment is not taken at the same time as the
product is given to the customer. And when there is the potential for the customer to leave
without paying. Unlike a restaurant a bar can have a patron become intoxicated and forget to
pay. In this situation the store has already captured the customer's card data and can close the
tab against the card.

Tabs are intended to be opened and closed on the same day. Usually within a few hours. They
are not intended for taking payment and shipping goods at a later time. Open tabs are auto
purged if older than 14 days.

When closed the transaction data is sent to the Payment Server for authorization. If there is
a communication error between UniTerm and the Payment Server or between the Payment
Server and the processor tabs may be eligible for stand-in authorization. Stand-in authorization
must be enabled and the transaction must be eligible for offline storage to take place. Tabs that
are converted to offline authorizations will skip stand-in amount and count limits in order to
prevent losing tabs.

Allowed card types that can be used for tabs:

• Credit
• Debit
• EBT Cash Benefits

These card types are specifically not allowed for tabs:

• Gift
• EBT Food Stamps

Note: ChipTab requires additional server-side licensing. The same Store and Forward
license as required for Stand-in processing is also required for ChipTab support. If already
performing stand-in, then no additional licensing is necessary.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 12

Note: ChipTab was introduced as of UniTerm v9.

2.5.1 ChipTab eligibility rules

Not all transactions qualify for ChipTab processing. Below you will find a quick reference to
assist in determining why a transaction may not be eligible.

Applicable to all methods of entry:

• Private Label Gift cards are not allowed
• EBT Food Stamps are not allowed

EMV-specific failure reasons:

• ODA (Offline Data Authentication) static or dynamic failed
• Card on terminal exception file
• CDA (Offline combined dynamic data authentication with application cryptogram) failed
• SDA (Static data authentication) was selected
• Card application expired
• Card application not yet effective
• Cardholder verification was not successful
• Unrecognized Cardholder Verification Method
• PIN failures such as: limit try exceeded, pin entry device not present or inoperable, pin not

entered
• Consecutive offline limit exceeded

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 13

3 UniTerm Integration and Deployment Overview

3.1. Deployment ... 13
3.2. Versioning ... 14

3.2.1. Version Scheme .. 14
3.2.2. Wildcard Versioning ... 15

3.3. Licensing ... 15
3.3.1. Registration ... 15
3.3.2. Device Definition .. 15
3.3.3. Management ... 16

3.4. Starting UniTerm ... 16
3.4.1. Command Line Options ... 16

3.5. Multiple Instances .. 16
3.6. Swapping Devices .. 17
3.7. Communication to UniTerm from Integration .. 17

3.7.1. Network Communication ... 18
3.7.2. Android Service Communication ... 18
3.7.3. Apple iOS ... 18

3.8. Shutting Down UniTerm .. 22
3.9. User Setup Permissions and Requirements .. 22
3.10. Linux OS device access permissions ... 23

3.10.1. HID devices .. 23
3.10.2. Serial devices .. 23

3.11. Android - Embedding ... 24
3.11.1. HID Support ... 24

3.12. Deploying UniTerm in a public-facing environment ... 25

3.1 Deployment

UniTerm is provided to developers during the integration process as an OS-specific standalone
installer available from https://download.monetra.com/uniterm/production.

For production deployments on platforms other than Android and iOS, UniTerm should
be bundled and distributed with the POS system under a distribution license from Monetra
Technologies, LLC. Integrators should package the UniTerm directory that is created
after UniTerm installation, and distribute that directory packaged together with their own
components (e.g. POS application software). The UniTerm directory is self-contained and can
be relocated to any path the integrator sees fit, without any additional system dependencies as
long as the paths for any sub-directories included with the UniTerm installation (if applicable)
are kept in the same relative paths in relation to the UniTerm executable.

It is also acceptable to redistribute the standalone installation package.

For Android deployments, the UniTerm app is available via the Google Play Store, and it
may be installed from there without a distribution license for Android versions 6 and higher.
Alternatively, by obtaining a distribution license, the UniTerm software can be bundled with
the application software as a Service component supporting Android versions 4.4 and higher.

https://download.monetra.com/uniterm/production

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 14

For Apple iOS deployments, there are two distribution methods. The first is a framework
that can be embedded into an application. Note that for iOS apps using this framework to
be accepted into the App Store, Apple as well as the device manufacturers must provide
approval for each type of BlueTooth device that will be used with the application. The second
distribution method involves installation of the UniTerm application from the iOS App Store
and using URL schemes for Inter-Process communication. Those interested in the framework
for iOS should contact their sales representative.

Please contact sales@monetra.com for guidance on distribution licensing and bundling.

Note: On Operating Systems that support package and/or executable signing, such as on
Windows, MacOS, iOS and Android, the available packages are signed with an appropriate
trusted distribution key by Monetra Technologies, LLC. Do NOT continue any installation
if the package fails the automatic signature verification check. All downloads should also
always be obtained from our secure HTTPS server at https://download.monetra.com/uniterm/
production and should not be downloaded if the browser displays a warning that the site
certificate cannot be verified.

Note: UniTerm, as of v9, requires connectivity to a Payment Server powered by Monetra v8.7
or higher, such as provided by a private installation or a hosted gateway such as TranSafe.

Note: Notifications for new versions including feature, bugfix, and security release can
always be found on the official Monetra Technologies RSS feed available at https://
www.monetra.com/release-notes/rss. There is no built-in upgrade process, each new version
is released as a full package that overwrites the existing installation.

3.2 Versioning

Note: UniTerm, as of v9, requires connectivity to a Payment Server powered by Monetra v8.7
or higher, such as provided by a private installation or a hosted gateway such as TranSafe.

3.2.1 Version Scheme

The versioning scheme employed by UniTerm is formatted as X.Y.Z, where each X, Y, and
Z components are numeric-only version indicators separated by a period. Each numeric
component may be from one to three digits in length. All software distribution updates will
result in at least one of the components being updated.

The X component of the version indicates the product major version number. The major
version component only changes when there are significant feature changes, or the changes
impact any part of a security standard, such as PCI PA-DSS.

The Y component of the version indicates a product minor version change. The minor version
will change when there are minor feature enhancements that do not impact the part of any
security standard such as PCI PA-DSS.

The Z component of the version indicates a bug-fix release. Bug-fix releases do not change the
overall feature-set or functionality of UniTerm, but may include security related fixes such as
updates to 3rd party libraries (e.g. cryptographic libraries) distributed with UniTerm.

https://download.monetra.com/uniterm/production
https://download.monetra.com/uniterm/production
https://www.monetra.com/release-notes/rss
https://www.monetra.com/release-notes/rss

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 15

3.2.2 Wildcard Versioning

PCI PA-DSS requires a specific wildcard versioning definition which corresponds to the
release which is being validated for compliance. With this release of UniTerm, the official
wildcard versioning is 9.Y.Z. The major (X) version number component is fixed at 9, which
as per the versioning definition states there will be no major feature changes or changes which
impact the PCI PA-DSS standard (e.g. all changes that do not affect the major version number
are classified as "no impact" changes). The minor (Y) and bug-fix (Z) wildcard components
comply with the descriptions in the previous section.

Any future change which results in a change to the major version number will have a
corresponding PCI PA-DSS validation.

3.3 Licensing

All UniTerm licensing is managed at the server level by the Payment Server system with
which UniTerm is connected. Since licensing is administered at the server level, there is
nothing unique that needs to be deployed with UniTerm on the client side (such as a license or
certificate file).

3.3.1 Registration

UniTerm generates unique ids for each connected device in order to send to the Payment
Server to track the number of UniTerm licenses in use.

When UniTerm is started, during the first transaction and every 24hrs thereafter, the unique
device ID will be automatically registered with the Payment Server. If this device is already
associated with a UniTerm license, the license meta-data will be updated. If the device is not
currently associated with a UniTerm license, the Payment Server will register this unique
device id if a UniTerm license slot is available, otherwise the Payment Server will reject the
registration request and UniTerm will cancel the transaction.

3.3.2 Device Definition

A device is either a physical Point of Interaction device, or a Graphical User Interface of the
computer in which UniTerm is running.

Each physical device will consume a UniTerm license, the license is tied to the device serial
number. Since the license is tied to the device, the physical device may be transferred to
different POS stations without consuming additional licensing.

The use of the GUI mode in UniTerm, whether used with keyboard emulation card readers,
for acceptance of manually keyed card entry, will also consume a UniTerm license. This
license will be generated based on the unique machine ID or the MAC address of the first
NIC. However if a physical customer-facing card entry device is also present, passing the
device and devicetype parameters along with a u_flags of GUIONLY will use the device's
licensing rather than registering the workstation itself, thus saving on duplicate licensing for
workstations that use both a physical device and GUI modes of operation.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 16

Note: If a physical device is being used and GUI mode is also used, if care is not taken, this
will consume 2 UniTerm licenses, one for the physical device and one for the GUI mode of
operation. Please see the u_flags of GUIONLY.

3.3.3 Management

Since UniTerm licensing is managed at the Payment Server server, all license administration
(view licenses, delete licenses, etc) can be performed using either the Monetra Administrator
GUI or via the Payment Server API. To more easily help identify and manage licenses,
additional data is available in the license list such as: initial creation timestamp, last used
timestamp, last used username, device type, and device serial number.

Note: If a UniTerm license (device or GUI) is removed (de-registered) from the Payment
Server, then the license slot is not eligible to be re-used for 7 days. However, if the same
[deleted] device is re-presented, it can immediately re-consume the license slot.

3.4 Starting UniTerm

For Desktop based deployments, the UniTerm module must be launched by the POS
application software and should not be started at startup. If the POS system does not start
UniTerm, then it is possible UniTerm will not be able to obtain screen focus for on-screen
prompts.

For Android deployments, UniTerm should be automatically started at Boot, and simply
Binding to the already-running service is sufficient.

For iOS deployments, the application is bound to a URL Scheme during installation and will
automatically load when the URL Scheme is called.

3.4.1 Command Line Options

When starting UniTerm for Desktop based deployments, there are a few command line options
supported that control the behavior.

• -c - Full path to the ini file to read. If not specified, it searches for the uniterm.ini in
the paths documented in Section 4.1.

• -p - Port for UniTerm to listen on for incoming connections. If not specified, the value in
the ini file is used. The purpose of this configuration value is to aid in the ability to start
multiple UniTerm instances on the same machine with the intention of using GUI mode for
multiple user logins (e.g. Terminal Services).

• -h - Help options are displayed.

3.5 Multiple Instances

When running UniTerm in conjunction with Citrix or Terminal Services, with the intention
of using GUI mode, it is necessary to start multiple instances of UniTerm on the same

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 17

machine. This can be accomplished by using a different port for each UniTerm instance.
The port can either be configured via the command line options or by specifying a different
UniTerm ini file. The integrated application would then communicate with UniTerm on its
own dedicated port to prevent interference with any other UniTerm instances. The dedicated
UniTerm instance must still be started by the POS application in that user instance otherwise
UniTerm will be unable to display information or prompts.

If using UniTerm in device-only mode, it is recommended to use only a single instance of
UniTerm and not start multiple instances. UniTerm is designed to be able to handle multiple
transactions across multiple devices without the need for additional instances.

3.6 Swapping Devices

From time to time it may be necessary to swap out devices, whether the device is
malfunctioning, being updated to a new firmware load, or simply being relocated. When
a device is swapped, UniTerm needs to be made aware of this, otherwise there could be
unexpected behavior. In order to reduce transaction latency as much as possible, the first
time a device is used after a fresh UniTerm start, UniTerm performs many queries against the
device which may take many seconds to complete. These queries gather device information
such as its type and capabilities and ensure the proper configuration parameters are loaded.
In extreme cases this first transaction may detect a full device load is necessary which could
extend this time to many minutes and result in a device reboot. On all subsequent transactions,
these initial steps are stored in an in-memory cache and will not be repeated unless UniTerm
is explicitly told to do so. When a device is swapped out, UniTerm may have no way to know
this has occurred since it is operating on this cached data.

In order to tell UniTerm that a device has been swapped out, simply send a
u_action=deviceload request or restart UniTerm. Either of these actions will force
UniTerm to clear its in-memory cache and connect to the device as if it was the first
transaction.

In some cases if the device itself isn't swapped (so the serial number has not changed), but
instead the device has been manually cleared, such as when performing a firmware update,
additional steps may need to be taken to ensure EMV parameters are loaded. There may be
no way for UniTerm to determine if the device has the latest EMV parameters so UniTerm
caches the loadid associated with the device serial number in the uniterm.ini. If this on-
disk cache is incorrect because the device was manipulated outside of UniTerm, UniTerm must
be informed of this by passing u_forceload=yes with the u_action=deviceload request.
The u_forceload will tell UniTerm to ignore the loadid cache forcibly loading the EMV
parameters into the device. In fact, it may be prudent to explicitly use u_forceload any time
a device is swapped to ensure all data is loaded into the device.

3.7 Communication to UniTerm from Integration

The communication protocol for UniTerm is very similar to that of the Payment Server. At the
heart of the protocol is a simple key/value pair message structure, very similar to the Monetra
Client Interface Protocol Specification. In fact, some of these key/value pairs sent to UniTerm
are simply passed-through to the Payment Server for processing.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 18

When communicating with UniTerm, you use standard network communications in Desktop
and Server environments (Windows, MacOSX, Linux). For Mobile applications, the
communication method is specific to what the OS allows for Inter-Process communication.

Note: The communication channel with UniTerm can never transmit or receive sensitive card
holder data, nor can it control or manage access to such data.

3.7.1 Network Communication

UniTerm supports both raw SSL communication with key/value pair transport, XML
over HTTPS, or JSON over HTTPS. The protocol being used is autodetected by UniTerm
on the first message sent by the POS. The standard APIs used with the Payment Server
are also able to be used with UniTerm as they simply facilitate the same key/value pair
transport mechanisms as the raw protocols. For more information on the underlying
communications protocols or APIs, please reference the communications documentation and
API documentation for Monetra.

Normally, UniTerm listens on localhost on port 8123, and as of UniTerm v8.2, listens on both
IPv4 and IPv6 if available. It is possible to make UniTerm accept connections from remote
machines by configuring 'localonly=no' in the uniterm.ini. In order to use requests
that do not normally require authentication, you must also configure 'sharedsecret=' in
the uniterm.ini and send u_req_hmacsha256 in the request. Please see Section 5.2.6 for
more information on shared secret usage.

3.7.2 Android Service Communication

The Android Service communication option utilizes AIDL in order to transmit the key/value
pairs for each request to the UniTerm Service. Please see our Android SDK available at https://
www.monetra.com/developers for an example of how to utilize this communication option.

3.7.3 Apple iOS

There are 2 methods of communication for Apple iOS. The first is an embedded framework
with all included dependencies that is linked directly into the iOS application. The framework
is available under special distribution license, please contact your sales representative for more
information. The second method is an official Apple iOS App Store application that can be
installed free and uses URL Schemes for Inter-Process communication.

3.7.3.1 Framework

UniTerm on iOS can be provided bundled as a framework which allows private access to
UniTerm's functionality. When building an application, the UniTerm framework itself along
with the distributed dependencies (libmonetra, openssl, zlib), as well as the system-
provided ExternalAccessory Framework and libresolv.tbd library must be added
to the "Linked Frameworks and Libraries" for your project (In XCode under Project-
>General). The relevant frameworks and dependencies and a complete and working
integration example will be provided with the UniTerm iOS Framework distribution.

https://www.monetra.com/developers
https://www.monetra.com/developers

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 19

Note: Both iOS device and simulator builds are provided for integrators. It should be noted,
however, that simulator builds do not support External Accessories, so can only be used
against IP/Ethernet-enabled devices. It is therefore recommended that developers have both
Bluetooth and IP/Ethernet enabled devices for the various phases of development available.

A bundle with auxiliary files that will be installed is also provided. This bundle, called
uniterm.bundle, must be added to your project in XCode under Project -> Build
Phases -> Copy Bundle Resources. Within the bundle is a default uniterm.ini; this
should be edited to reflect the Payment Server location that should be used by the app. The
ssl_cadir parameter should NOT be modified. The port parameter in the Uniterm section
can be ignored or removed. When used as part of an iOS app connecting to UniTerm using
a network connection is not supported. When a new build of UniTerm is distributed with the
app, if there are differences in the uniterm.ini the new uniterm.ini will be merged with
the old one. This only applies to the build number of the UniTerm library and not the build
number of the app itself.

The app itself must be configured with the "Wireless Accessory Configuration" capability.
Also, the Info.plist must list all external accessories it will be used with, along with other
MFi protocols the device(s) supported advertise to prevent the user from being prompted to
search the app store with a list of other applications that support this device. The current list
of protocols is configured via Add "Supported external accessory protocols" with the below
protocols (UISupportedExternalAccessoryProtocols):

• com.ingenico.easypayemv.spm-transaction - Actual used protocol
• com.ingenico.easypayemv.spm-networkaccess

• com.ingenico.easypayemv.spm-pppchannel

• com.ingenico.easypayemv.barcodereader

• com.ingenico.easypayemv.spm-configuration

• com.ingenico.easypayemv.spm-sppchannel

• com.ingenico.easypayemv.printer

The "Actual used protocol(s)" listed above will be part of the u_device in the key/value pairs
sent to UniTerm (prefixed with MFi: for Made For iOS).

Note: For iOS apps using this framework to be accepted into the App Store, Apple as well as
the device manufacturers must provide approval for each type of BlueTooth device that will
be used with the application.

3.7.3.1.1 APIs

Function Description

BOOL uniterm_initialize(void); Initialize UniTerm. This must be called at
app startup and before any other UniTerm
functions are called. It is recommended to put
it in the AppDelegate's init function.

BOOL

uniterm_modify_config(NSDictionary

*req);

Modify Configuration. The uniterm.ini
file should not be edited directly by
the app after initialization. Instead the

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 20

uniterm_modify_config should be
used. This ensures that any UniTerm
cached network connections are properly
updated. This function must be used because
uniterm_run_trans is explicitly blocked
from modifying the configuration. Direct
modification of the uniterm.ini is
possible before uniterm_initialize is
called. Both uniterm.ini and uniterm-
orig.ini need to be changed. Specifically
uniterm-orig.ini should be a copy of the
uniterm.ini.

NSDictionary

*uniterm_run_trans(NSDictionary

*req);

Main interface for running transactions with
UniTerm. It accepts UniTerm key value pairs
and runs the request. It returns a dictionary
of the key value pair responses. This is a
blocking function and should be used with
dispatch_async. When the call completes
it should notify the app that it is finished so
the app can take appropriate action with the
response.

3.7.3.2 URL Schemes

Apple iOS communication relies on the use of URL Schemes for Inter-Process
communication. Information on this communication method can be found at
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html.

When an application calls UniTerm's registered URL Scheme, the UniTerm application will
present itself in the foreground and process the requested transaction(s). Data passed via the
URL scheme is JSON-encoded, containing the key/value pairs that make up a transaction
as per this documentation. Multiple requests may be passed in a single message. Part of the
request message is a response URL scheme for delivery of the response to the integrated
application.

Please see our iOS Demo source code available at https://www.monetra.com/developers for an
example of how to utilize this communication option.

Please note that Apple does not support the concept of a background service or true inter-
process communication in the same way as Android supports, therefore UniTerm must run in
the foreground while processing transactions. If this is not acceptable, then please contact us
about the Framework version of UniTerm for iOS.

3.7.3.2.1 URL Scheme messaging format

The JSON format is an object with strings for the keys and values. If multiple requests are
to be sent at once, each request object may be encapsulated in an array, with each member

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://www.monetra.com/developers

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 21

in the array being a single request. When using request stacking, it is required that a unique
u_id be passed with each request, which will be returned in the response and must be used for
matching, never rely on the response array being in the same order as the request. If not using
request stacking, u_id is not a required parameter.

Example JSON data:

 [
 {
 "u_action": "devicetypes",
 "u_id": "1"
 },
 {
 "u_action": "bluetoothlist",
 "u_id": "2"
 },
 {
 "u_action": "version",
 "u_id": "3"
 }
]

For URL Schemes, UniTerm uses the x-callback-url (http://x-callback-url.com/)
specification. All requests should be sent to "uniterm://x-callback-url/transaction"
and must specify the following parameters:

• x-source: Textual name of the calling app.
• x-success: Return URL for successful requests. Will be used when UniTerm was able to

process a request. This will be returned even when there was an error with the transaction
itself such as a decline.

• x-error: Return URL on critical errors (such as parse failures). Will be used when there is
an error in parsing the request. Such as malformed JSON data.

• request: The JSON request data, url-encoded.

Example Request:

 uniterm://x-callback-url/transaction?
 x-source=MyApp&
 x-error=myapp://error&
 x-success=myapp://result&
 request=${URLENCODED-JSONDATA}

Example Critical Error:

 myapp://error?
 errorCode=${CODE}&
 errorMessage=${MESSAGE}

Example Successful Response:

http://x-callback-url.com/

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 22

 myapp://result?
 response=${URLENCODED-JSONDATA}

3.8 Shutting Down UniTerm

UniTerm should only be shut down if it was started by the POS, and does not apply to Android
systems. On Windows, a standard Window shutdown message may be sent, or on Unix a
SIGTERM signal may be sent to the UniTerm process. Or universally UniTerm supports a
shutdown message via its protocol.

3.9 User Setup Permissions and Requirements

All authentication is managed by the Payment Server.

UniTerm requires that sensitive data never be returned from the Payment Server in order to
ensure that the integrated POS is removed from PCI PA-DSS scope. In order to ensure this,
UniTerm only allows merchant sub-users to authenticate. Sub users are unique usernames
that can be tied to a merchant user with their own individual password, but provided only
a subset of the permissions allowed. These unique usernames, when passed to UniTerm,
are prefixed with the username of the merchant user and delimited with a colon (:). (e.g.
merchuser:subuser).

UniTerm requires the sub user have the obscure sensitive information flag set, or it
will generate a failure.

UniTerm also requires these permissions to operate:

• CHKPWD

• CARDTYPE

• SALE

• VOID

• REVERSAL

• TERMLOAD - Required if supporting EMV, Canadian Interac Debit, or TransArmor
• EMVCOMPLETE - Required only if supporting EMV
• INTERACMAC - Required only if supporting Canadian Interac Debit
• ADMIN:MERCHINFO - Used for populating receipt metadata and determining merchant card

brands and capabilities in use
• ADMIN:GETPERMS - Used for verifying account setup.
• ADMIN:IMAGEADD - Only required if device support signature capture.
• ADMIN:CARDSHIELDPROVISION - Only required if supporting stand-in or chiptab

operations.

More permissions may be required based on the POS operations supported. Please consult with
your integration and development team for the features used.

Note: Sub users may be created using the Monetra Client GUI after logging in, under Admin
-> SubUserManager

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 23

3.10 Linux OS device access permissions

3.10.1 HID devices

Most Linux distributions, by default, do not allow non-root users to access HID devices. Since
it is not desirable to run a POS or UniTerm as root, some system changes are required to grant
access to normal users. In general, the udev subsystem controls device enumeration, so some
rules must be added to tell it what permissions to grant for enumerated HID devices.

Before a udev rule can be added, a system administrator must determine what group to grant
privileges to HID devices. On RedHat based systems, the most suitable pre-existing group
name is probably input. For Debian based systems, the most suitable pre-existing group name
is probably plugdev. If no suitable groups are pre-existing, the system administrator should
create one with an appropriate name.

Next a file named /etc/udev/rules.d/99-hid.rules should be created with contents
similar to:

KERNEL=="hidraw*", SUBSYSTEM=="hidraw", MODE="0660", GROUP="$group"

Of course, replacing $group with the desired group name.

Finally, the system administrator should add the user that wishes to run UniTerm to the group,
a command to do that might look like:

usermod -a -G $group $user

Of course, replacing $group and $user as appropriate. If already logged in as the user being
modified, it is necessary to log out and back in for the group membership to be updated.

Once these steps are performed, UniTerm should now be able to run as a non-root user and
access HID devices

3.10.2 Serial devices

If the user that runs UniTerm is unable to open a serial device, most likely it is simply a group
permissions issue. Both RedHat based and Debian systems use the dialout group for serial
port access. A system administrator might need to do further research in to what group may be
used on their system.

In order to add your user to the appropriate group, a command to do that might look like:

usermod -a -G $group $user

Of course, replacing $group and $user as appropriate. If already logged in as the user being
modified, it is necessary to log out and back in for the group membership to be updated.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 24

If your distribution is not setting group membership on serial devices during enumeration, it
may be necessary to add specific udev rules to allow this. Please see the previous section for
an example.

3.11 Android - Embedding

3.11.1 HID Support

Android does not have blanket USB permissions. Access needs to be granted by the user on
a per device basis. Permission granting is not supported by the UniTerm AAR and must be
handled by the containing application itself. Once permissions are granted UniTerm can access
the device.

The manifest must include the uses-feature for USB host.

 <uses-feature android:name="android.hardware.usb.host" />

There are two methods for obtaining permissions. The Android USB Host documentation
provides a detailed overview of the permission process: https://developer.android.com/guide/
topics/connectivity/usb/host

UsbManager.hasPermission() should be used to determine if the app can access the
device or if it needs permission from the user to do so. If the manifest method is used the
request method may still be necessary to implement. However, the manifest method allows the
user to associate the device with the application so permission only needs to be granted once.

3.11.1.1 Permission via Manifest

The device vendor and product ids can be registered by the Application though the manifest
file. When the device is connected the user will be prompted if they want to open the device
with the application. There is an option to always open with the given application the user can
select. If they do not select a default application they will be prompted every time the device is
connected. Once allowed the application can use the device.

The manifest will specify an intent filter for a given activity for USB device attached. A
meta-data specifying supported devices is associated with the intent which Android uses to
determine if the application supports the given device.

 <activity ...>
 <intent-filter>
 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />
 </intent-filter>
 <meta-data android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"
 android:resource="@xml/device_filter" />
 </activity>

The device_filter xml file specifying one or more devices using vendor an product ids.
The ids must be a decimal number and cannot be hex.

https://developer.android.com/guide/topics/connectivity/usb/host
https://developer.android.com/guide/topics/connectivity/usb/host

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 25

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <usb-device vendor-id="1234" product-id="5678" />
</resources>

The disadvantage of this method is it work off of the device being attached. If the application
is running and the device is already connected the user will not be prompted.

3.11.1.2 Permission via Request Dialog

This method uses the UsbManager.requestPermission() function to display a permission
request to the user to allow USB access for an already-connected device. The application will
use an intent to make the request. A broadcast receiver will need to be registered with the
intent in order for the application to receive the users response to the query. If approved by the
user the application can use the device.

This does not grant access to USB in general. The device in question is part of the permission
request. The user is only given permission for that specific device.

For this method the application should use the UniTerm request of u_action=hidlist to
enumerate the currently connected devices and get the path column. Then use the path to
get the relevant device handle out of UsbManager.getDeviceList(). This device can
then be used for the permission request as per: https://developer.android.com/guide/topics/
connectivity/usb/host#permission-d

3.12 Deploying UniTerm in a public-facing environment

In some environments it may be beneficial to deploy UniTerm such that it is "public-facing",
meaning that untrusted (e.g. internet) users can access UniTerm. This is mostly useful for
web-based POS systems which may need to talk to UniTerm via the back-end host rather than
the front-end machine (while utilizing IP-enabled terminals). In this case, UniTerm may be
running anywhere in the world, rather than on the POS system as is typically done.

There are a few requirements that must be followed to ensure UniTerm an sensitive data is
protected and complies with the PCI-DSS requirements:

• Deploy UniTerm in a DMZ, behind a firewall with only specific ingress and egress ports
allowed.

• Configure the use of external database, not the built-in default SQLite database.

• The database must reside within a different, private, system and security zone, and not be
deployed in the DMZ with UniTerm.

• Ensure any terminals connecting via IP to UniTerm are using TLS v1.2 or higher, or are
using P2PE encryption.

• The only egress ports that should be open for UniTerm are to the Payment Server server (by
default port 8665) restricted to that host, and a similar rule allowing access to the external
database.

https://developer.android.com/guide/topics/connectivity/usb/host#permission-d
https://developer.android.com/guide/topics/connectivity/usb/host#permission-d

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 26

• The only ingress ports should be the API port (by default 8123), and if using IP-enabled
terminals, the port configured in the [device_server] section of uniterm.ini

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 27

4 Configuration

4.1. Configuration Files .. 27
4.2. Configuration Parameters ... 27

4.2.1. Section: [payment_server] ... 28
4.2.2. Section: [uniterm] ... 29
4.2.3. Section: [device_server] ... 33
4.2.4. Section: [db] ... 34
4.2.5. Section: [logging] ... 37
4.2.6. Section: [tab] ... 38
4.2.7. Section: [standin] ... 39
4.2.8. Section: [blacklist] ... 40

4.1 Configuration Files

There is a single configuration file named uniterm.ini that must be configured before
UniTerm can be used. Included with UniTerm is a file named uniterm_example.ini that
can be used as a template.

The uniterm.ini file MUST be readable and writable by the UniTerm process.

The location of the uniterm.ini file may vary from system to system, and the default search
paths, listed in priority order, are:

• Windows:
• %APPDATA%/UniTerm/uniterm.ini

• same path as the uniterm.exe executable
• Mac OS X:

• ~/Library/Application Support/UniTerm/uniterm.ini

• Linux/Unix:
• ~/.config/UniTerm/uniterm.ini

• ~/.uniterm/uniterm.ini

• same path as the uniterm executable
• iOS/Android: N/A - embedded into the application bundle, meant to be modified via GUI or
u_action=modifyconfig

Note: If the uniterm.ini file cannot be located, or does not have proper read and write
access, UniTerm will still start listening on the default port 8123 and return an INI related
u_errorcode on all requests with a description of the issue. It should be noted that once
the error has been corrected, UniTerm must be restarted to clear the error condition to force
UniTerm to re-read its INI file.

4.2 Configuration Parameters

The parameters in this section are in standard ini format grouped by sections. Sections are
in the format of "[section]". The settings for each section are in key/value pair format of

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 28

"key=value". Each setting and section are delimited from each other using a new line, either
Unix LF or Windows-style CRLF are acceptable.

Note: If editing the example ini file on Windows, using Notepad.exe is not advised. The
example file uses Unix-style line endings that Notepad.exe cannot understand so it will
make the entire file appear as a single line or otherwise not formatted correctly. It is known
that Wordpad.exe does in fact understand Unix line endings and can be used successfully.

4.2.1 Section: [payment_server]

• host: Required. Hostname/address where the Payment Server resides

• port: Required. Port to connect to the Payment Server on

• ssl_cert_validate: Optional. Controls validation of the SSL server certificate of the
Payment Server. Possible Values are:

• full - validate server certificate signature and require the full domain matches the
certificate

• fuzzy - validate server certificate signature and only the base domain matches the
certificate

• validate - validate only the server certificate signature, do not validate the domain
name in the certificate

• none - perform no server certificate validation
If no value is specified, defaults to full. For self-hosted payment servers, a self-signed SSL
certificate may be used. You must either explicitly deploy a signed certificate (signed by a
trusted CA) with the Payment Server to be able to validate its certificate, or add the Payment
Server's self-signed SSL certificate to the trust list (see ssl_cadir). It is required to use
full if connecting to the Payment Server across the public internet.

• ssl_cadir: Optional. Path to a directory containing a list of the PEM-encoded trusted SSL
Certificate Authority roots or individual server certificates to be added to the trust list. If
available, the OS-provided trust list will be loaded first and any certificates in the provided
directory will be appended. Only used when ssl_cert_validate is set to a value other
than none.

• ssl_auth_key: Optional. Path to the SSL client certificate key used for two factor
authentication. If not specified, the server will not be able to validate the authenticity of
the client, however most deployments will not utilize this level of verification. Must be
specified if ssl_auth_cert is specified.

• ssl_auth_cert: Optional. Path to the SSL client certificate used for two factor
authentication. If not specified, the server will not be able to validate the authenticity of
the client, however most deployments will not utilize this level of verification. Must be
specified if ssl_auth_key is specified.

• persist_conn: Optional. Whether or not UniTerm should maintain persistent connections
to the Payment Server, or if it should disconnect when there are no active transactions. If not
specified, defaults to no.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 29

4.2.2 Section: [uniterm]

4.2.2.1 Operating Parameters

• port: Required on all except Android. Comma-separated list of ports to listen on for
incoming connections.

• proxy_port: Optional. Comma-separated list of ports that use the HAProxy proxy
protocol. Must be ports configured in the port parameter. When enabled, all inbound
connections on the specified port must use the proxy protocol or they will be dropped.

• sharedsecret: Optional. The value specified is the shared secret to use for the
communication protocol as part of an HMAC-SHA256 authentication token sent with the
request for otherwise unauthenticated actions. It is required to use a shared secret for remote
connections (localonly=no) if unauthenticated requests need to be used. Authenticated
requests such as u_action=txnrequest do not use the shared secret, even if originating
outside the local machine. Please see the Shared Secret section for more information.

Authenticated requests are those requests that do not take a username or password which is
authenticated by the Payment Server server.

Note: u_action=modifyconfig requests use the sharedsecret_mc secret instead.

• sharedsecret_mc: Optional. Master Command Shared Secret. Master Command
unauthenticated actions have additional impact and utilize a separate shared secret. These
require a higher level of security because they can either make changes or provide sensitive
information about the system. Thus they are in their own restricted group. Actions protected:
• modifyconfig

• sysinfo access

• sysinfo stats

• sysinfo blacklisted

• ipclientlist

The usage of this shared secret is the same as a normal unauthenticated shared secret.

This is optional for mobile applications as they can control command usage. If set it must be
used.

• localonly: Optional. If not specified, defaults to yes. If set to no, a sharedsecret must
be set to allow access to otherwise unauthenticated requests.

• ssl_cert: Optional. SSL/TLS certificate. If not specified attempts to locate ssl.crt in
the same path as uniterm.ini. If using the server needs to support multiple hostnames (as
is supported via SNI), separate each certificate path with a semi-colon and it will load them
in order. The order must match the order in ssl_key.

• ssl_key: Optional. SSL/TLS certificate private key. If not specified attempts to locate
ssl.key in the same path as uniterm.ini. If using the server needs to support multiple

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 30

hostnames (as is supported via SNI), separate each private key path with a semi-colon and it
will load them in order. The order must match the order in ssl_cert.

• ssl_cadir: Optional. Enables verification of certificate presented by a remote client
connection. Specifies a directory containing PEM files used to validate all clients connecting
to UniTerm.

Note: UniTerm is designed to keep the POS away from the cardholder data, most customers
will not have a need for client certificate verification.

• ssl_protocols: Optional. Set the SSL/TLS protocols allowed for inbound connections to
UniTerm (out of scope for PCI as no Card Holder Data is ever transmitted or managed by
this connection).

UniTerm defaults to secure settings, and this should not be changed unless necessary as it
could have security and PCI implications.

The value for this field is a space separated list of protocols. Valid protocols allowed to be
configured are: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3 If the protocol is appended
with a plus (+) sign, then it means that protocol version or higher, for instance, "tlsv1.1+"
implies "tlsv1.1 tlsv1.2 tlsv1.3".

The default value is tlsv1.0+, however if tlsv1.2 or higher is supported by integrators,
it is recommended to change this to tlsv1.2+

• ssl_ciphers: Optional. Set the SSL/TLS ciphers allowed for inbound connections to
UniTerm.

UniTerm defaults to a known secure cipher list, and this default list may change from
release to release as the security environment changes. It is not recommended to set this
parameter as it could have security and PCI implications.

The value is a standard OpenSSL cipher string.

• serialquirks: Optional. Controls how serial connections are handled, some platforms
may need special settings to operate reliably, but most systems should not configure these
flags. This setting is controlled by a set of pipe (|) delimited flags as listed below:
• ignore_termios_failure - Ignore errors while setting communications settings. This

may be necessary on certain types of serial port emulators that do not allow this.
• no_flush_on_close - Do not flush the serial port buffers on close.
• no_restore_on_close - Do not restore the original configuration for the serial port on

close.
• async_timeout - When using asynchronous reads, allow the read operation to timeout

rather than continue indefinitely, some serial port emulators may lock up without this
flag. This flag is ignored when used with busy_polling. Windows Only.

• busy_polling - Perform busy polling in a separate thread, rather than using
asynchronous reads. This may be necessary for some serial port emulators that do not
properly support Overlapped operations. Windows Only.

• event_loop: Optional. Valid values are pool and single. The default value is pool.
Normally the pool type should be used because it provides the highest performance.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 31

The single type is provided primarily for resource contained systems and will use less
memory, fewer threads, and overall fewer system resources. It is not advised to use the
device server with this setting.

• idle_conn_timeout: Optional. Once a POS connection to UniTerm has been idle for the
specified amount of time in seconds, it will be closed. Default value is 30, use 0 to disable.

• req_receive_timeout: Optional. The maximum amount of time in seconds between
UniTerm receiving data and fully parsing the request. As soon as data is received the timer
will start. Once a full request has been received the timer will stop. If the time is exceeded
the connection is dropped. Default value is 4, use 0 to disable.

• req_max_size: Optional. Maximum number of bytes allowed for a single request. This is
not bytes allowed per connection. A single connection can send multiple requests but a
single request cannot exceed this limit. Default is 20971520 (20MB).

Note: While the vast majority of requests will be very small, this needs be large enough to
handle device firmware upgrades.

• max_conns: Optional. Maximum number of open connections. If the limit is exceeded
new connects will not be accepted until the total number of open connections drop below
the limit. High volume systems should increase this limit appropriately for the system's
resources. Default value is 1000.

• password_iterations: Optional. Number of PBKDF2 iterations performed when
hashing passwords. The larger this number the longer password verification will take.
This can cause system slowdown when used with a default (SQLite) database. It is not
recommended to exceed a count of 1,000,000 when using SQLite. Default value is 10000.

• unauthenticated_whitelist: Optional. IP addresses or subnets
which are allowed to Perform unauthenticated actions. Default is
127.0.0.0/8,192.168.0.0/16,10.0.0.0/8,172.16.0.0/12,::1/128,fc00::/7

(all local networks).

Applies to commands that can be secured with a shared secret (sharedsecret setting not
sharedsecret_mc).

ip / netmask in bits format is supported. Separate multiple entries with a comma (',').

Applies even when sharedsecret is not set and localonly=no.

• master_command_whitelist: Optional. IP addresses or subnets which
are allowed to perform Master Command unauthenticated. Default is:
127.0.0.0/8,192.168.0.0/16,10.0.0.0/8,172.16.0.0/12,::1/128,fc00::/7

(all local networks).

Applies to commands that can be secured with a master command shared secret
(sharedsecret_mc setting not sharedsecret).

ip / netmask in bits format is supported. Separate multiple entries with a comma (',').

Applies even when sharedsecret_mc is not set and localonly=no.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 32

• enable_modifyconfig: Optional. Disabled modifyconfig completely if set to false.
Default is true.

4.2.2.2 Feature Parameters

• idle_message: Optional. Set the default idle message displayed on any device when
not processing a transaction. This can be overwritten on a per-device level using the
u_deviceidlemessage parameter in the protocol. This is not supported on all devices.

• unsupportedcard: Optional. If not specified, defaults to not supported. Allowed values
are txnreq, cardreq. The values may be specified in a pipe-delimited format to
include more than one. For legacy configurations, a value of yes is an alias for txnreq|
cardreq, and a value of no is the equivalent of blank or not set. txnreq allows the
u_action=txnrequest to support non-financial cards, and cardreq allows the use of the
cardrequest functionality.

This allows trackdata to be returned to the caller for txnrequest and cardrequest only
when the card type is confirmed to be non-financial. This is to allow in-store private-label
gift (on txnrequest) as well as manager cards. The card must be returned unencrypted
from the reader to be supported.

• nocvmfloor: Optional. If not specified, defaults to disabled, should be specified as a dollar
amount. This configuration value will disable cardholder verification (e.g. PIN or Signature)
when the transaction amount is less than this limit. For instance if the value is set to 50.00,
and a 40.00 authorization is attempted as a swipe transaction, they will NOT be prompted
to sign, however a 60.00 authorization would be prompted to sign. This feature works with
EMV contact as well, however EMV Contactless has its own set of limits advertised by the
Payment Server that UniTerm will honor. Applies only to Credit Card purchases.

• guimode: Valid options are normal and touchscreen. A modifier value of fullscreen
can also be added to force the GUI to be rendered full screen rather than in a window,
the modifier will be separated from the mode by a pipe (|), for example touchscreen|
fullscreen. If no guimode is specified, it defaults to normal. TouchScreen mode
enlarges all text in dialogs and provides an on-screen keypad to be used for manual card
entry. Only numeric input is allowed in touchscreen mode, if an alpha-numeric Postal
code needs to be entered (such as for Canada), a keyboard must be used. Normal mode is
designed for use at a workstation with a keyboard and mouse.

• cardwait: Optional. Txnstart card presentation timeout in seconds. -1 uses internal
timeout as determined by the device (default). 0 waits indefinitely. Any other value is the
timeout specified in seconds.

For devices that support specifying a card presentation timeout, this value will control
how long until a timeout occurs. This is mostly useful in unattended/kiosk environments
where you may want to prompt indefinitely waiting on an order. This is only applicable to
the txnstart method when the order amount is not yet known. Not all devices support
overriding their internal timeout, and it is up to the POS to handle this situation when an
unexpected timeout occurs.

• signaturetimeout: Optional. Action to take when signature entry times out.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 33

If a customer does not sign, the transaction is in an undefined state. The customer could
have refused to sign because they no longer want to continue with the transaction. Or they
could have forgotten to sign.

In the former it's ideal to treat this condition as a cancellation and automatically reverse the
transaction. In the latter it is ideal to honor the auth and request that the customer sign the
receipt.

Choices:
• reverse - Default. Will reverse the transaction.
• ignore - Will ignore the timeout. u_need_signature=yes and
u_signature_timeout=yes will be returned to the POS.

4.2.3 Section: [device_server]

UniTerm can function as a server with remote devices initiating inbound connections, some
call this "client mode". Not all devices support such a feature. Connected devices are addressed
via serial number rather than ip address.

• ipserver=u_devicetype:port: Start an unencrypted IP listening port for the specified
device type and port. If multiple device types or multiple ports are desired, can be specified
using a semi-colon separated list. Not all device types are supported.

Example: ipserver=ingenico_rba:6000;ingenico_rba:9000

• ipserver_standalone=u_devicetype:port: Start an unencrypted IP listening port
for the specified device type and port, which will start a flow for a standalone terminal
(operation via device menus only, no API operation). If multiple device types or multiple
ports are desired, can be specified using a semi-colon separated list. Not all device types are
supported.

Example: ipserver_standalone=ingenico_rba:6002;ingenico_rba:9002

• sslserver=u_devicetype:port: Start a SSL/TLS listening port for the specified device
type and port. If multiple device types or multiple ports are desired, can be specified using a
semi-colon separated list. Not all device types are supported.

Example: sslserver=ingenico_rba:6000;ingenico_rba:9000

• sslserver_standalone=u_devicetype:port: Start a SSL/TLS listening port for the
specified device type and port, which will start a flow for a standalone terminal (operation
via device menus only, no API operation). If multiple device types or multiple ports
are desired, can be specified using a semi-colon separated list. Not all device types are
supported.

Example: sslserver_standalone=ingenico_rba:6003;ingenico_rba:9003

• ssl_cert=[filepath]: Location of a SSL/TLS server certificate to present to client upon
connection. Required when using sslserver

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 34

• ssl_key=[filepath]: Location of a SSL/TLS server private key associated with the
ssl_cert. Required when using sslserver

• ssl_cadir=[path]: Optional. Client certification verification. Only clients connecting
with a certificate signed by these Certificate Authorities will be allowed to connect. If a
directory is not provided, will not attempt client certificate verification.

• ssl_protocols: Optional. Set the SSL/TLS protocols allowed for inbound connections to
UniTerm from a device.

UniTerm defaults to secure settings, and this should not be changed unless necessary as it
could have security and PCI implications. The value of this should only be lowered if the
device communication does not traverse the public internet or P2PE is being utilized.

The value for this field is a space separated list of protocols. Valid protocols allowed to be
configured are: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3 If the protocol is appended
with a plus (+) sign, then it means that protocol version or higher, for instance, "tlsv1.1+"
implies "tlsv1.1 tlsv1.2 tlsv1.3".

The default value is tlsv1.2

• ssl_ciphers: Optional. Set the SSL/TLS ciphers allowed for inbound connections to
UniTerm from a device.

UniTerm defaults to a known secure cipher list, and this default list may change from
release to release as the security environment changes. It is not recommended to set this
parameter as it could have security and PCI implications.

The value is a standard OpenSSL cipher string.

• max_conns: Optional. Maximum number of open connections for each server. If the limit is
exceeded new connects will not be accepted until the total number of open connections drop
below the limit.

Each server is treated independently for the total count. For example,
ingenico_rba:6001;ingenico_rba:9001 port 6001 will allow up to max_conns
and port 9001 will allow up to max_conns. Giving a total of max_conns * 2 allowed
connections.

High volume systems should increase this limit appropriately for the system's resources.

If not set will default to UniTerm's max_conns config value. If neither are set default is
1000. This acts as an override.

4.2.4 Section: [db]

UniTerm uses a database to store state data. If no database is configured, it will automatically
default to an sqlite database in a subdirectory named data of the directory containing the
uniterm.ini.

• type: Database type to use:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 35

• sqlite - Default, server-less.

• mysql

• postgresql - Linux/Unix only, use ODBC for Windows

• oracle - Linux/Unix only, use ODBC for Windows

• odbc - for Microsoft Windows, iODBC, or UnixODBC

• db2 - Linux/Unix only, for direct DB2 connectivity

• connection: A DB-specific connection string or DSN. This string often configures the host/
port, and available options for the driver in use. The connection strings are a set of key/value
pairs, with keys separated from the values with an equal sign (=), and values separated by a
semi-colon (;). If quoting is in use, a single-quote (') is recognized, and an escape character
of a backslash (\\) can be used. E.g.: host=10.130.40.5:3306;ssl=yes

sqlite options:

• path: Required. File system path to SQLite database.

• journal_mode: Optional. Defaults to WAL if not specified, other options include DELETE

• analyze: Optional. Defaults to "TRUE" if not specified. On first connect, automatically
runs an analyze to update index statistics if set to "TRUE".

• integrity_check: Optional. Defaults to "FALSE" if not specified. On first connect,
automatically runs an integrity check to verify the database integrity if set to "TRUE".

• shared_cache: Optional. Defaults to "FALSE" if not specified. Enables shared cache
mode for multiple connections to the same database.

• autocreate: Optional. Defaults to "TRUE" if not specified. The default is to auto-create
the database if not found, set this to "FALSE" to error if the database does not exist.

mysql options:

• db: Required. Database Name.

• socketpath: Conditional. If using Unix Domain Sockets to connect to MySQL, this is
the path to the Unix Domain Socket. Use the keyword of 'search' to search for the socket
based on standard known paths. Cannot be used with host.

• host: Conditional. If using IP or SSL/TLS to connect to MySQL, this is the
hostname or IP address of the server. If not using the default port of 3306, may
append a ":port#" to the end of the host. For specifying multiple hosts in a pool,
hosts should be comma delimited. Cannot be used with socketpath. E.g:
host=10.40.30.2,10.50.30.2:13306

• engine: Optional. Used during table creation, defaults to INNODB. The default data
storage engine to use with mysql. Typically it is recommended to leave this at the default.

• charset: Optional. Used during table creation, defaults to UTF8.

• max_isolation: Optional. Sets the maximum isolation level used for transactions.
This is used to overwrite requests for SERIALIZABLE isolation levels, useful with
Galera-based clusters that do not truly support Serializable isolation. Should
use "SELECT ... FOR UPDATE" type syntax for row locking. Available settings:
"REPEATABLE READ", READ COMMITTED"

postgresql options:

• db: Required. Database Name.

• host: Required. This is the hostname or IP address of the server. If not using
the default port of 5432, may append a ":port#" to the end of the host. For

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 36

specifying multiple hosts in a pool, hosts should be comma delimited. E.g:
host=10.40.30.2,10.50.30.2:15432

• application_name: Optional. Application name to register with the server for
debugging purposes.

oracle options:

• dsn: Conditional. Data Source Name as specified in tnsnames.ora, or a fully qualified
connection string. If not specified, both host and service_name must both be specified
and a connection string will be dynamically generated. Use of this parameter negates
the ability to use load balancing and failover logic, but facilitates the use of Oracle's
equivalent functionality. An example of a fully qualified connection string would be:

(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(Host = 10.100.10.168)(Port = 1521))
 (CONNECT_DATA = (SERVICE_NAME = orcl))
)

• host: Conditional. If dsn is not specified, this parameter must be specified along with
the service_name parameter. This is the hostname or IP address of the server. If
not using the default port of 1521, may append a ":port#" to the end of the host. For
specifying multiple hosts in a pool, hosts should be comma delimited. Cannot be used
with dsn. E.g: host=10.40.30.2,10.50.30.2:11521

• service_name: Conditional. If dsn is not specified, this parameter must be specified
along with the host parameter. Cannot be used with dsn. E.g: service_name=orcl

odbc/db2 options:

• dsn: Required. Database Source Name.

• mysql_engine: Optional. Used during table creation when the underlying database
is MySQL, defaults to INNODB. The default data storage engine to use with mysql.
Typically it is recommended to leave this at the default.

• mysql_charset: Optional. Used during table creation when the underlying database is
MySQL, defaults to UTF8.

• ro_connection: Optional. Route read-only requests to a different database pool of nodes.
Same configuration syntax as connection.

• conn_flags: Optional. These control how the connection is handled. Settings are a set of
flags, delimited with pipes (|).

• prespawn: Pre-spawn all connections, not just the first. Without this, the remaining
connections are on-demand.

• no_autoretry_query: If a non-transactional query is rolled back due to a deadlock or
connectivity failure, the default behavior is to automatically retry the query, indefinitely.
For queries executed as part of may be dependent on prior queries in the transaction. This
flag will turn off the auto-retry logic. NOT RECOMMENDED.

• load_balance: If there are multiple servers specified for the connection string, this will
load balance requests across the servers instead of using them for failover.

E.g.: conn_flags=prespawn|load_balance

• num_conns: Optional. Maximum number of SQL connections to attempt to create. Valid
range 1-1000. Default 2.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 37

• num_ro_conns: Optional. Maximum number of SQL connections to attempt to create for
the read only pool. Valid range 1-1000. Default 2.

• username: Conditional. For databases which require authentication, the username.

• password: Conditional. For databases which require authentication, the password.

• to_reconnect: Optional. How many seconds to allow a connection to be used before a
disconnection is forced. The connection will be terminated even if not idle, termination will
occur when a connection is returned to the pool instead of prior to use to prevent unexpected
delays. This can be used to either redistribute load after a node failure when load balancing,
or to fall back to a prior host. Set to 0 for infinite. Default is 0.

• to_idle: Optional. Maximum amount of time a connection can have been idle to be used.
Some firewalls may lose connection state after a given duration, so it may be advisable to
set this to below that threshold so the connection will be forcibly terminated rather than
use. The connection will be terminated before use and the consumer will attempt to grab
a different connection from the pool, or start a new one if none are available. Set to 0 for
infinite. Default is 0.

• to_fallback: Optional. Number of seconds when a connection error occurs to a host
before it is eligible for "fallback". If this isn't set, the only time the first host will be
re-used is if the secondary host(s) also fail. This should be used in conjunction with
reconnect_time_s. Set to 0 to never fallback. Not relevant for load balancing, the host will
always be in the attempt pool. Default is 0.

4.2.5 Section: [logging]

UniTerm v9 introduces logging support with user-definable levels. No levels on production
builds can output any sensitive data. Available configuration parameters:

• level: Pipe delimited list of log levels that are used to determine the data written to the log
file. Available levels are:
• error: Errors
• warn: Warnings
• info: Informational Messages
• conn: Inbound connection status
• tran_detail: Request/Response parameters for inbound connections
• mon_detail: Request/Response parameters outbound to the Payment Server
The default value is: info|error|conn|warn|tran_detail|mon_detail

• system: Which logging infrastructure to use. Multiple infrastructures can be used
simultaneously if specified as pipe delimited.
• syslog: Local syslog, only available on Unix systems
• tcpsyslog: TCP syslog, available on all systems to send to remote syslog server via

TCP.
• file: Log to local file.
The default value is file.

• time_prefix: Timestamp prefix to add to each line of the log specified as a format string.
Options:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 38

• %t - Unix Timestamp
• %M - 2-digit Month
• %a - abbreviated month (e.g. Jan)
• %D - 2-digit day of month
• %d - abbreviated day of week (e.g. Sun)
• %Y - 4-digit year
• %y - 2-digit year
• %H - 2-digit hour
• %m - 2-digit minute
• %s - 2-digit second
• %u - microseconds
• %z - time zone offset
The default is %a %D %H:%m:%s.%u %z which may generate a line such as:

Jan 11 09:19:11.426235 -0500 [INFO]:

• syslog_facility: The syslog facility to log to, used for both TCP syslog and system
syslog. Defaults to user if not set. May also use daemon or local0-7

• tcpsyslog_host: Host or address of the TCP syslog server to log to.

• tcpsyslog_port: TCP port the TCP syslog server is listening on.

• tcpsyslog_bufsize: Maximum KB that the message queue will use when the remote
server is offline. Use 0 for unlimited, use with caution. Default is 512.

• file_directory: Directory where log files should be kept when using file logging. Files
will be called uniterm.log[.#]. The default is in a subdirectory named log in the same
directory as the uniterm.ini.

• file_keep: Number of rotated log files to keep. Defaults to 10.

• file_archive: Command to be run against file on rotation. Default is nothing.

• file_archive_ext: If file_archive changes the file name, such as after compressing,
adding a .bz2 extension, it must be configured here so rotated files can be found.

• file_rotate_autostart: Boolean field for whether or not to automatically initiate a
rotate on startup. Default is yes.

• file_rotate_days: Number of days after log creation that the log file should be rotated.
Use 0 to disable. Defaults to 7.

• file_rotate_size: Size in KB to automatically rotate log file. Defaults is 10240
(10MB). Use 0 to disable.

4.2.6 Section: [tab]

UniTerm v9 introduces tab support for capturing a customers card before charging it such as is
used by bars. Available configuration options:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 39

• only_standin: Only allow the same cards that are allowed for stand-in/store-and-forward
processing to be used for tabs. This should be used if also using stand-in processing to
ensure only transactions that can be approved as stand-in will be used for tabs. Otherwise
cards that cannot be used for stand-in processing will decline if there is a connectivity
failure. Default value is no.

4.2.7 Section: [standin]

UniTerm v9 introduces stand-in/store-and-forward support for locally approving transactions
when connectivity is unavailable. Available configuration options:

• enabled: Whether or not stand-in processing should be enabled. Default value is no.

• auth_code: Authorization code to send back for a stand-in approval, dynamically
generated based on provided pattern. Default value is SA!!!!.

Special symbols can be used to generate random authorization codes.
• ! = Number 0-9
• $ = Alpha uppercase
• & = Number 0-9 or alpha uppercase
All other characters are used as as literals.

If using a generated sequence it's recommended to use a prefix to denote a stand-in
authorization that includes a non-numeric non-alpha character to differentiate from 6 digit
alpha numeric online authorization codes.

A static code can also be used if dynamic codes are unwanted.

Field has a maximum of 6 characters. If longer will truncate on the left.

Examples:
• SA!!!! -> SA8526
• SA$$$$ -> SAZHFW
• SA&&&& -> SA9GS7
• SNF999 -> SNF999

• verbiage_approve: Verbiage returned for stand-in approval. Default value is STANDIN
AUTH.

• verbiage_decline: Verbiage returned for stand-in decline. Default value is STANDIN
DENY.

• max_trans: The maximum number of transactions that can be stored at any given time.
Applies to each individual user. Is NOT allowed to be 0, if set to 0 (or not set) stand-in will
be disabled.

• max_tran_amount: Maximum single transaction amount eligible for offline approval. Is
NOT allowed to be 0.00, if set to 0.00 (or not set) stand-in will be disabled.

• max_aggregate_amount: Maximum aggregate transaction amount eligible for storage.
Applies to individual users. Is NOT allowed to be 0.00, if set to 0.00 (or not set) stand-in
will be disabled.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 40

• max_offline_time: Maximum number of days UniTerm can be offline before it will
reject offline approvals. There is a hard maximum of 8 days allowed. Is NOT allowed to be
0 it must be configured appropriately, if set to 0 (or not set) stand-in will be disabled.

• upload_interval: How often to attempt to upload stored transactions in minutes.
Transactions are sent one at a time across all users. Transactions are only sent if the user is
not currently processing any transactions. If the given user is processing transactions that
user's stored transactions will be skipped and will attempt to be sent during the next upload
interval. Default is 15.

• keep_response_days: Number of days to keep responses to stored transactions. Stored
transaction responses older than the configured number of days will be deleted. At which
point there is no way to associate the UniTerm TTID returned with a stand-in approval to
the actual TTID generated when the transaction is sent. Default is 30.

4.2.8 Section: [blacklist]

UniTerm v9 introduces automatic intrusion detection and prevention that is configurable
to block potentially malicious requests. All events are tracked per originating IP address.
Available configuration options:

• time_span: Time in minutes of the sliding window used to determine if successful events
should cause a ban. Use 0 to disable. Default value is 2.

time_span_fail: Time in minutes of the sliding window used to determine if failure
events should cause a ban. Use 0 to disable. Default is 5.

ban_time: Time in minutes the ban should remain in effect. Use 0 to disable. Default is 15.

ban_extend: When a client connects after it's been banned the ban expiration time will be
extended by this number of minutes. Use 0 to disable. Default is 10.

whitelist: Comma delimited list of subnets that
will never be banned. Default is all local subnets:
127.0.0.0/8,192.168.0.0/16,10.0.0.0/8,172.16.0.0/12,::1/128,fc00::/7

max_connect: Maximum number of repeatedly open successful connections in
time_span window. Use 0 to disable. Default is 40.

max_requests: Maximum number of successful requests, excluding ping and status in
time_span window. Use 0 to disable. Default is 40.

max_failures: Maximum number of failure events (e.g. Invalid u_action, message
parse failure, authentication failure) within the time_span_fail window. Use 0 to disable.
Default is 5.

max_ping: Maximum number of successful protocol-level ping requests allowed within
time_span window. Use 0 to disable. Default is 1500.

max_status: Maximum number of successful status requests allowed within time_span
window. Use 0 to disable. Default is 1000.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 41

max_action: Maximum number of a given action. This differs from max_requests in the
fact that this is tracked per-action, rather than grouping all actions together. Use 0 to disable.
Default is 20.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 42

5 UniTerm Protocol

5.1. Overview ... 42
5.2. UniTerm Request Parameters ... 43

5.2.1. UniTerm Actions (u_action) ... 49
5.2.2. System Information Actions (u_sysinfo) ... 55
5.2.3. Stand In Actions (u_standin) .. 56
5.2.4. ChipTab Actions (u_tab) ... 58
5.2.5. Interchange/Rate Qualification Requirements .. 60
5.2.6. Shared Secret/HMAC handling .. 62

5.3. UniTerm Response Parameters ... 62
5.4. UniTerm Error Codes .. 65
5.5. UniTerm Status Codes ... 66
5.6. UniTerm Representment Codes .. 67
5.7. Tip Prompting ... 68
5.8. Cash Back Prompting .. 68
5.9. EBT Processing ... 69
5.10. QuickChip ... 69
5.11. Pay at the Table ... 70
5.12. Parking: Card-In/Card-Out Entry and Exit Gates ... 71

5.12.1. Considerations ... 72
5.13. Signature Capture .. 72

5.1 Overview

Application software communicates with UniTerm via the UniTerm protocol (which is
intentionally similar to the Monetra Client Interface Protocol as they are meant to coexist).
The protocol description documents only the key/value pairs that make up a transaction. These
key/value pairs can then be transported using one of the supported communications protocols
such as the standard Monetra SSL/TLS, possibly using one of our provided APIs to make
communication easier. Other supported communication methods include a ReSTful API, XML
over HTTPS and JSON over HTTPS. Mobile (Android/iOS) have their own specific method of
transport that must be used instead.

Note: For users that wish to use the ReST API, that documentation is available at https://
developers.monetra.com/uniterm.html and provides the equivalent information to the next
section.

UniTerm is self-contained and does not require any external operating system dependencies
or third party dependencies, it is only reliant on the Operating System and supplied network
infrastructure (it does not depend on any OS-provided cryptographic subsystems).

By default UniTerm listens on port 8123 and connects to the configured remote instance of the
Payment Server on port 8665. These ingress and egress ports and hosts are configurable as per
Section 4.2.2.1 and Section 4.2.1.

Note: When processing transactions (such as u_action=txnstart or
u_action=txnrequest), UniTerm simply augments the requests made with cardholder

https://developers.monetra.com/uniterm.html
https://developers.monetra.com/uniterm.html

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 43

data captured either via a device or on-screen, and passes them on to the Payment Server. A
majority of the parameters to be sent are simply pass-through to the Payment Server and not
interpreted by UniTerm in any way; Therefore this guide must be used in conjunction with the
Monetra Client Interface Protocol Specification to come up with a complete list of parameters
necessary to complete transactions.

Note: Referenced documentation available at https://www.monetra.com/developers:

• Monetra Client Interface Protocol Specification
• Monetra IP, SSL, and Drop File Specification (only TLS/SSL supported by UniTerm)
• Monetra XML Specification

Note: New to UniTerm v9.5 is a ReST API. If the ReST API is being used, this chapter
can be skipped and instead reference the ReST API here: https://developers.monetra.com/
uniterm.html

5.2 UniTerm Request Parameters

The table below describes the parameters used within the UniTerm protocol.

PARAMETER VALUE

username The Payment Server username to authenticate as. For security
reasons this should be a restricted subuser account.

password The Payment Server password associated with username.

u_action See UniTerm Actions (u_action) for a complete description
of each action.

• deviceload

• txnrequest

• txnstart

• txnfinish

• txnquick

• devicepolemsg

• cardrequest

• passthrough

• cancel

• deviceupload

• deviceprint

• devicereboot

• reqsignature

• reqconfirm

• reqinput

• devicetypes

• status

• seriallist

• bluetoothlist

• mfilist

https://www.monetra.com/developers
https://developers.monetra.com/uniterm.html
https://developers.monetra.com/uniterm.html

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 44

• blelist

• hidlist

• ipclientlist

• shutdown

• modifyconfig

• version

• deviceinfo

• standin

• tab

• expirecached

• sysinfo

• devicecondition

• opencashdrawer

• readbarcode

• externalselect

u_flags Txnrequest, Txnquick, Txnstart, Txnfinish and
Cardrequest only. Multiple flags may be sent per data ticket
request. All flags are separated by a pipe (|) symbol.

• DEVICEONLY - Suppresses display of clerk facing
prompting and feedback, also known as GUI mode. For
instance, on a swipe request, no swipe dialog would be
presented nor would the clerk be informed of the status for
customer-facing device interaction.

Note: Setting this mode will prevent keyboard
emulation readers from working, it will also
prevent the ability for accepting clerk keyed
input via a keyboard. On Android, iOS, and
UniTerm launched in console mode, this flag is
automatically implied as they do not support a
GUI mode of operation.

• GUIONLY - Suppresses use of a referenced physical device.
This flag can be used to utilize the physical device's
UniTerm license for a clerk-facing GUI request, without
using the device itself for card input. Without this flag, the
GUI would register an additional UniTerm license based on
the machine's unique id.

• KEY - Perform capture of manually keyed data. Not valid
on cardrequest. If an account or expdate field is
passed in on the request to UniTerm, the fields will be pre-
populated in GUI mode.

Note: If a manually keyed EBT card is
to be entered for a Food Stamp (SNAP)
transaction, pass the qualified food amount
via u_foodamount in order to go through the
EBT flow and PIN prompting. Do NOT pass

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 45

u_foodamount if you are NOT intending to run a
Food Stamp transaction as keyed.

• AVS - Request AVS data. Only allowed on keyed
transactions. If a street or zip field is passed in on the
request to UniTerm, the fields will be pre-populated in GUI
mode.

• CVV - Request for CVV data. Only allowed on keyed
transactions.

• NOEXPDATE - Do not prompt for the card expiration date
on keyed transactions. This is mostly used if you know you
will be running a gift card without expiration date. Does not
have an effect on encrypted device keyed entry which may
always force expiration date.

• GIFTPIN - Request a PIN for gift cards, when a gift card is
presented. Does nothing if a different card type is presented.

• NOTIP - Disable tip prompting if enabled via the
Payment Server merchant account configuration of
merch_tippercent.

• NOCASHBACK - Disable cash back prompting if enabled
via the Payment Server merchant account configuration of
merch_cashbackmax.

• NOCONFIRM - When performing a QuickChip finalization
via txnfinish do NOT prompt the cardholder to confirm
the amount prior to running the authorization.

• NOSIGNATURE - If using a signature-capable device, but
an integrator does not want to use the auto-signature-
capture capabilities in the UniTerm flow, this flag will treat
the device as if it is not capable of accepting a signature.
The u_need_signature response flag will be set
appropriately for the transaction requirements.

• NOSTANDIN - Do not allow transaction to be used for stand-
in if currently offline even if it would otherwise qualify.

• DELAYRESPONSE - This flag will cause UniTerm to send
the transaction response back to the caller after the device
has been closed. The device can be used immediately for
a subsequent transaction with this flag, otherwise device
closing will happen in the background which will hold a
lock on the device for at least 100ms, or possibly longer.

• CARDMETA - This flag will cause UniTerm to request the
card metadata directly from the Payment Server (v8.9.0+)
rather than relying on less detailed internal information.
The relevant metadata would be from a Global BIN table,
which contains information such as if a card is Debit-
capable, HSA/FSA capable, and so on. When used during a
txnstart request, it allows an integrator to make decisions
based on the card presented (such as for support of Debt
Repayment or Healthcare transactions). When used during
a txnrequest, txnquick request, it optimizes the flow

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 46

on transactions such as not prompting for Debit on a swipe
transaction if the card is not debit capable.

• PERSISTDEVICE - This flag will cause UniTerm to hold
the device open rather than closing it when the request is
complete. Especially on mobile communication methods,
devices may go to sleep and cannot be opened until hitting a
physical button on the device. Holding the device open will
allow the device to still enter standby mode and will wake
up when needed. This may not be desirable if needing to
use the device outside of UniTerm.

• EXTERNALSELECT - This flag will allow a custom to select
an AID, as requested by the device when there are multiple
choices. This is optional and only necessary when using a
device that does not have a display or buttons.

u_device Requests: Txnrequest, Txnquick, Txnstart,
Cardrequest, DeviceInfo, DeviceLoad,

ExpireCached, DeviceUpload, DevicePrint,

DeviceReboot, ReqSignature, ReqConfirm,

ReqInput

This specifies the path of the card entry device. Required
parameter unless performing a GUI-based action (such as
manual keyed entry, or swiping via a keyboard emulation card
reader). Required if u_devicetype is provided.

• HID[:serialnum] - HID (such as USB-HID), takes an
optional serial number

• SER:port - Serial
• MFI:protocol,[serialnum] - Made for iOS (MFi), as

retrieved from u_action=mfilist
• BT:mac,[uuid] - Bluetooth
• BLE:identifier - Bluetooth LE using device identifier as

retrieved from u_action=blelist, u_blelist=scan

BLESRV:service_uuid - Bluetooth LE using the device
service id as retrieved from u_action=blelist

Note: Using the service id will connect to the first
device connected exposing the service use the
identifier method to use a specific device.

• IP:ipaddr:port - IP
• TLS:ipaddr:port - TLS over TCP/IP. Allows for

connecting to a device that supports encrypted inbound
communication.

• IPCLIENT:serialnum - IP Client Mode. Currently only
supported for RBA devices support RBA client mode for
ethernet connectivity. UniTerm will act as a server and the

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 47

devices will connect to UniTerm and be referenced by their
serial number.

u_devicetype Requests: Txnrequest, Txnquick, Txnstart,
Cardrequest, DeviceInfo, DeviceLoad,

ExpireCached, DeviceUpload, DevicePrint,

DeviceReboot, ReqSignature, ReqConfirm,

ReqInput

The unique device type supported by UniTerm as found via a
devicelist request. Required if u_device is provided.

u_language Txnrequest, Txnquick and Txnstart only. Used to
override terminal defaults for display of text prompts. Current
choices are "en" or fr".

u_forceload deviceload only. Values allowed are yes, no, and full. If
not specified defaults to no. A value of yes will force a reload
of all EMV parameters even if UniTerm believes the device
already has the latest set of parameters. A value of full will
additionally force reloading of all other objects UniTerm
maintains, including but not limited to, configuration values,
forms, and images.

u_id Txnrequest, Txnquick, Txnstart, TxnFinish,
Cardrequest, Status, and Cancel only. A unique id
(generated by the calling application) that identifies the
transaction. This is used for checking the status or canceling
the transaction. Without this id the transaction state cannot be
queried.

amount Txnrequest, Txnquick, and TxnFinish only. Transaction
amount. Required.

u_b64data Deviceupload only. Base64-encoded file data to upload.
Required.

u_filename Deviceupload only. Filename of the file to write. Required.

u_text Deviceprint only. ASCII pre-formatted text to print to
receipt printer. Required.

u_message Reqconfirm, Devicepolemsg only. Textual request
message to prompt user for confirmation. Required.

u_long_message Reqconfirm only. Long textual message to display for
user confirmation. Must be pre-formatted for the device
screen width, no wrapping is performed. This can be used for
displaying and confirming agreements.

u_inputtype Reqinput only. Type of user input being requested.
Required.

Possible values:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 48

• PHONENUM - Request user to input a phone number. This
may be useful for loyalty card prompting.

• INVOICENUM - Request user to input an invoice/order/ticket
number

• ZIP - Request user to input a zip code
• TIP - Request user to input a tip amount. Requires an
amount key value pair to be passed to calculate tip
percentages. Uses the tip percentages configured within the
Payment Server merchant account configuration.

• EMAIL - Request user to input an email address (only
available on supported devices).

u_foodamount Txnrequest, Txnquick, Txnstart, or Txnfinish only.
Dollar amount indicating amount of qualified food purchases
for EBT Food Stamps (SNAP). Or during an Txnstart
the food amount may not yet be known, but to enable EBT
prompting, a special value of maybe may be passed, followed
by the the real amount in Txnfinish. If the amount passed
in Txnfinish is zero, but EBT Food Stamps was selected by
the card holder, the transaction will be aborted.

u_req_hmacsha256 Required on unauthenticated requests when the
sharedsecret configuration parameter is set. Please see
Section 5.2.6 for more information.

u_req_sequence Used in conjunction with u_req_hmacsha256. Please see
Section 5.2.6 for more information.

u_req_timestamp Used in conjunction with u_req_timestamp. Please see
Section 5.2.6 for more information.

u_blelist Blelist only. The only valid value to be passed to this is
scan, which will list all supported present devices instead of
just known device services.

u_rcpt txnrequest, txnquick, txnfinish, tab, standin,
passthrough, passthroughmac only. Whether a pre-
formatted receipt should be added, and optionally the format
to output the receipt in. May specify a pipe-delimited list of
receipt types to output multiple receipt formats. Please see
Appendix C for more information.

payment_server.host Modifyconfig only. Modify the [payment_server] host
configuration value.

payment_server.port Modifyconfig only. Modify the [payment_server] port
configuration value.

u_sysinfo Sysinfo only. Possible values are access, blacklisted,
and stats.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 49

5.2.1 UniTerm Actions (u_action)

The table below contains the descriptions of each possible UniTerm Action. The AUTH
column indicates if the request requires authentication (username/password) or not.

u_action AUTH? description

deviceload Yes Load a device with EMV and/or Interac parameters. This
request will start a terminal download of EMV and/or Interac
parameters to load into the device being used. Requires
username, password, u_device, and u_devicetype
parameters.

If the load for the device is identical to the previous load, the
load will be skipped.

Please note this process may take up to 3 or 4 minutes
depending on the processing institution being used and the
device being used. The Device may also reboot during this
process. It is strongly recommended to call this function when
a lane opens, however if it is not called, it will automatically be
performed prior to the first transaction.

If the device or merchant account does not support EMV or
Interac, this command will simply return success.

txnrequest Yes Full Transaction Request for card holder data. Request
a transaction be performed, all normal Payment Server
transaction parameters should be included in the request that
may be required for processing or to comply with interchange
requirements (e.g. action, username, password, amount,
nsf, ordernum, etc). Sensitive data, explicitly, should not be
sent (e.g. trackdata, account, cvv2, pin) as that data will
be retrieved by UniTerm either via the GUI or via a card entry
device and forwarded to the Payment Server server as part of the
transaction request.

UniTerm will fully control the transaction flow and user
prompting for such a transaction. This request should only be
used when card data entry is required as part of the transaction,
for other operations passthrough may be a more appropriate
action.

txnstart Yes Transaction Start Request for card holder data. Request to start
a QuickChip transaction, similar in function to a txnrequest
message, but does not accept a transaction amount. Needs to be
followed up with a txnfinish or cancel request. Once a card
is presented and the cardholder has completed any necessary
verification and removed their card, a response will be returned
with card information metadata such as the card type, some

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 50

basic EMV card parameters, and the last 4 digits of the card
number.

Though the purpose of this request is to support QuickChip, it
still supports non-EMV transactions.

A u_id unique parameter is required to be sent with this request
for completing the transaction.

If action=preauth, this can be changed during txnfinish
to action=sale to assist with Debit routing

See QuickChip for more information.

txnfinish Yes Transaction Finish Request. Request to finish a QuickChip
transaction. Requires the integrator send the same u_id as
was sent with the initial txnstart request. The integrator
can choose to send additional parameters to pass through to
Payment Server with this request based on information returned
from txnstart (e.g. card type). Will return the same response
parameters as txnrequest.

If during the txnstart request an action=preauth was sent,
but the card type presented is a Debit card, an integrator may
change the action to sale, or abort.

See QuickChip for more information.

txnquick Yes Full Transaction Request for card holder data. Request
a transaction be performed, all normal Payment Server
transaction parameters should be included in the request that
may be required for processing or to comply with interchange
requirements (e.g. action, username, password, amount,
nsf, ordernum, etc). Sensitive data, explicitly, should not be
sent (e.g. trackdata, account, cvv2, pin) as that data will
be retrieved by UniTerm either via the GUI or via a card entry
device and forwarded to the Payment Server server as part of the
transaction request.

This operation is functionally similar to txnrequest however
internally it follows a Quick Chip flow (like txnstart +
txnfinish) which allows the cardholder to remove their card
earlier. This may make a transaction appear to be faster to an
end user.

devicepolemsg Yes Pole Display Update Message. Only valid after a Quick Chip
(txnstart) message, before txnfinish is called. Requires
the integrator send the same u_id as was sent with the initial
txnstart request. Devices that support a pole display can
have it updated until the transaction is completed. The message
(u_message) must be pre-formatted for the proper width of the
display.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 51

cardrequest Yes Non-Financial Card Entry Request. UniTerm will prompt for
card entry, and if it is determined the card is non-financial, it
will return the card data. This can be used for manager cards
and private label gift cards that are not processed through
Payment Server. The card must be swiped, and the reader must
be configured to return the card in unencrypted form.

passthrough Yes This action performs a direct pass-through of parameters to the
Payment Server server. Only the username, password, and
u_action parameters are required. This method will simply
proxy requests to the Payment Server and can be used for
transaction modifications (e.g. voids) or for pulling reports from
the Payment Server.

Do not use this request if cardholder data needs to be retrieved
for the transaction, it will not be returned.

Sensitive cardholder data is explicitly prohibited to be sent as
pass-through.

Users may wish to send their requests directly to Payment
Server rather than using this feature.

cancel Yes Will attempt to cancel an outstanding txnrequest or
txnstart. Requires username, password and u_id fields
which must match the pending request. If the transaction cannot
be canceled, such as if it is ineligible (such as when waiting
on a response from the Payment Server), or the device doesn't
support canceling the outstanding request, u_errorcode will
return PENDING_TRAN.

status Yes Requests the current status of a pending TXNREQUEST or
txnstart/txnfinish. Requires username, password
and u_id fields which must match the pending request. This
will provide a textual verbiage response suitable for clerk
display. Will normally return a u_errorcode of SUCCESS
when either the transaction is still in-progress or UniTerm is
in a cleanup phase after a transaction. Will return a value of
UID_NOT_FOUND if the request is no longer being processed.

deviceupload Yes Requests uploading the given file to the device at the requested
device path. Not all devices support the concept of file uploads.
Required parameters are u_b64data, u_filename, and may
return u_needreboot=yes to indicate that a device reboot
is required for the change to take effect (an automatic reboot
will not occur so that additional files that may also require
reboot can be uploaded). The u_filename should contain a
properly formatted path for the device in use. Some devices like
Ingenico RBA just want the filename with no path component.

deviceprint Yes Requests printing the given text to a built-in receipt printer if
available. The text provided must be formatted properly for the

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 52

given device. Only plain text receipts are supported. Receipt
data is provided via the u_text parameter.

devicereboot Yes Requests the device to reboot. Typically this should only be
done when an u_needreboot=yes parameter is returned in
response to a file upload request.

reqsignature Yes Requests the device to prompt for signature capture for non-
financial requests. This should only be used outside of a
transaction flow (e.g txnrequest or txnstart/txnfinish).
For financial transactions, a signature will be automatically
captured and stored within Payment Server so there is no need
to call this function. The signature data will be directly returned
to the caller in the u_signature response parameter.

Not supported in GUI mode

reqconfirm Yes Requests the user confirm a message presented on the screen.
The message is supplied via the u_message request parameter,
and the response is recorded in the u_confirmed response
parameter.

Not supported in GUI mode

reqinput Yes Requests the user enter the input type specified via
u_inputtype. The response data is returned in the u_input
response parameter.

Supported in both GUI and device mode

externalselect Yes Specifies the AID selected by the customer. If the
EXTERNALSELECT u_flags flag is specified and an external
selection is requested via the status operation, then this
operation must be used to relay the customer's selection. The
options are supplied in a JSON object with two parameters:

• title - Message for prompting customer
• request - Array of options, each of which is an object with

these keys:
• id - ID assigned to this AID. This will be returned in the
u_selection response parameter to indicate the selection
made.

• name - Name of this AID.

devicetypes No Will return a comma separated list of device types supported by
the UniTerm module. No authentication required.

Headers:

• devicetype - internal device name
• manufacturer - textual description of device manufacturer
• model - textual description of model
• connectivity - pipe separated list of connectivity methods

supported by the device, e.g. SERIAL|HID|BLUETOOTH|IP

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 53

• functionality - pipe separated list of functionality
supported by the device. Some devices are families and may
list features available in the family but not necessarily the
device being used:

e.g. EMV|MAC|E2E|KEY|SIGNATURE|UPLOAD|
PRINT|REBOOT|CONFIRM|FREEFORM|POLEDISPLAY|

CASHDRAWER|BARCODEREAD (FreeForm is used by
reqinput)

seriallist No Will return a comma separated list of all serial ports enumerated
on the system. No authentication required.

Headers:

• port - The port path
• desc - Description of port, if applicable

bluetoothlist No List all 'bluetooth' devices that have been paired with the
machine UniTerm is running on. The device may or may not be
present. Currently only supported on Android and MacOS.

Headers:

• name - The textual name of the device as registered with the
operating system.

• mac - The device bluetooth MAC address
• uuid - The device bluetooth UUID

blelist No List all BlueTooth LE known devices. If the u_blelist=scan
flag is set, it will list only currently present devices. When
requesting a full scan, an timeout key/value pair may be sent,
if not sent, it defaults to 30 seconds. Currently only supported
on iOS and MacOS.

Headers for u_blelist=scan:

• devicetype - Device type as may be passed in
u_devicetype.

• name - Textual name as advertised by device.
• identifier - Unique identifier of device to be passed as

part of u_device=BLE:

Headers when NOT using u_blelist=scan:

• devicetype - Device type as may be passed in
u_devicetype.

• name - Textual name as advertised by device.
• service - Common service exposed by devices of this type,

to be passed as part of u_device=BLESRV:.

mfilist No List all supported Made For iOS paired devices.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 54

Headers:

• devicetype - The devicetype (device internal name)
associated with the HID entry

• name - Textual name as advertised by device.
• protocol - Protocol advertised by device.
• serialnum - Serial number of device.

hidlist No List all supported HID (possibly USB-HID) devices that are
currently attached to the machine UniTerm is running on.

Headers:

• devicetype - The devicetype (device internal name)
associated with the HID entry

• manufacturer - The manufacturer as advertised by the
device.

• model - The pretty name for the device type as it is known to
UniTerm

• product - The product as advertised by the device.
• serialnum - The serial number as advertised by the device.
• path - System-specific path. May need to be used on

Android integrations.

ipclientlist MC Lists all IP Client connected devices

This is a Master Command secure operation with the following
restrictions:

• Request must be HMACed using the secure operation shared
secret when remote access (localonly=no) is configured.

• IP address of requester is allowed by configurable IP filter

Headers:

• devicetype - The devicetype (device internal name)
associated with the IP entry

• serialnum - The serial number as advertised by the device.
• ipaddr - IP address of the device.
• port - Port the device has connected to.
• tls - Whether the device is using a secure connection.
• idle - Whether the device is idle or currently in use.
• standalone - Whether the device is operating in standalone

mode.
• connected_ts - Unix time stamp of when the device

connected.
• last_used_ts - Unix time stamp of the last time the device

was used.
• info - Metadata about the device.

shutdown Yes Terminates execution of the UniTerm process. This should be
called when the application software terminates.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 55

modifyconfig MC Allows a select number of ini configuration settings to be set
via the API. In order to activate the ability to use this feature, an
integrator must enable the master command shared secret in the
configuration.

version No Requests the current version of UniTerm. The version
information is output in human-readable format in the verbiage
response field. The version information also contains the build
number.

deviceinfo Yes Requests the information about the connected device. Returns
response parameters of: serialnum, device_manuf,
device_model, device_app, device_appver,

device_kernver

standin Yes Perform an operation as specified by the u_standin key.
For more information on stand in processing in general,
see Section 2.4. Please reference the u_standin values in
Section 5.2.3.

tab Yes Perform an operation as specified by the u_tab key. For more
information on ChipTab processing in general, see Section 2.5.
Please reference the u_tab values in Section 5.2.4.

expirecached Yes Expire all cached merchant-related data both within the client
and host sides to ensure full load data is pulled during the next
transaction or deviceload.

sysinfo MC Perform a system information operation as specified by the
u_sysinfo key. Please reference the values in Section 5.2.2.

This is a Master Command secure operation with the following
restrictions:

• Request must be HMACed using the secure operation shared
secret when remote access (localonly=no) is configured.

• IP address of requester is allowed by configurable IP filter

devicecondition Yes Requests additional information from a device about its current
state. Can be used to get printer status or cash drawer status on
supported devices.

opencashdrawer Yes Requests the cash drawer be opened.

readbarcode Yes Requests reading a bar code.

5.2.2 System Information Actions (u_sysinfo)

The table below contains the descriptions of each possible system information action.

u_sysinfo description

access Tracks users and their last action. The action is logged in this report when
it has completed. Meaning, the currently running operation will not be
listed until it has finished. Only one entry per use will appear in the report.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 56

The user entry is updated with each completed operation. Not all fields
will have data if they were not present in the operation. For example,
device may be empty if a device was not used. The resulting report will
contain these headers:

• username - User
• device - Last device used in format Connecivity:location:type.

For example SER:/dev/cu.usbmodem142401:ingenico_upp.
• u_action - UniTerm action performed
• action - Payment Server action performed
• u_errcode - UniTerm response code returned
• code - General result code
• ttid - Transaction identifier
• tran_finish_ts - Unix Timestamp of when the last transaction

finished

blacklisted Blacklisted connection information. The resulting report will contain these
headers:

• ipaddr - Blacklisted IP address
• ban_event - Event that caused the blacklisting.
• expire_ts - Unix timestamp when the IP address will be removed

from the blacklist

stats Request general information about the current status of UniTerm. This will
result in Key/value pairs being returned:

• modify_config_pending - Whether UniTerm is waiting for
transactions to finish processing in order to run modify config.

• shutdown_pending - Whether UniTerm is waiting for transactions to
finish processing in order to shutdown.

• txn_pending - Number of transaction waiting for modify config to
finish processing before processing.

• txn_running - Number of transactions currently running. Will always
be at least 1 because this operation is included.

5.2.3 Stand In Actions (u_standin)

Note: Store and Forward, or Stand-in processing requires additional server-side licensing. If
licensing the Monetra Payment Server directly, and not using a gateway powered by Monetra
such as Transafe, there is a Store and Forward license available which allows all registered
UniTerm instances to perform stand-in operations. Otherwise, stand-in processing will
consume CardShield device licenses per UniTerm instance.

The table below contains the descriptions of each possible Stand In action.

u_standin description

update Update metadata on file associated with a transaction. These fields can be
updated:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 57

• amount

• cashbackamount

• clerkid

• comments

• custref

• examount

• ordernum

• ptrannum

• stationid

• surchargeamount

• tax

send Initiate sending stored transactions to the Payment Server. Transactions
are sent on a configurable timer and can be triggered to start sooner with
this sub action. Transactions will attempt to be sent but transactions may
remain in a stored state if there are connectivity issues.

Since this triggers the timer it applies to stored transactions of all users on
the system. You cannot selectivity send transactions.

This returns immediately and starts sending transactions as a background
task within UniTerm. It does not return any indication about status of or
number of transactions.

void Remove a transaction that has not yet been sent online. Must pass the
ttid returned from UniTerm.

list List all stored transactions for the user returning a CSV result. These
keys can be used to alter the query results (these should align with query
parameters as accepted by the Payment Server):

• ttid

• bdate

• edate

• timestamp

• type - (action)
• amount

• examount

• tax

• card - (cardtype)
• pclevel

• account - (last 4)
• expdate

• cardholdername

• ordernum

• custref

• ptrannum

• clerkid

• stationid

• comments

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 58

The resulting CSV will contain these headers:
ttid,proc,type,entrymode,card,pclevel,account,amount,

cardholdername,clerkid,comments,custref,expdate,

examount,cashback,ordernum,ptrannum,stationid,tax,

timestamp

totals Number of stored transactions and total stored amount for the requesting
user. Will return these result keys:

• num_trans - Number of transactions on file that have not yet been
forwarded

• total_amount - Total dollar amount (sum) of transactions on file, not
yet forwarded

listresp A CSV report with basic information about stored transaction that have
been successfully sent online. The TTID returned by UniTerm when stored
will appear in the u_ttid column and the Payment Server's TTID will
appear in the ttid column. Follow up transactions, such as reversal, can
continue to use the UniTerm TTID as long as the response is still on file. It
is highly recommended that the POS replace the UniTerm TTID with the
Payment Server TTID internally as soon as possible.

The resulting CSV will contain these headers:
u_ttid,ttid,timestamp,code,verbiage

getresp Get the Payment Server response for a stored transaction that was
successfully sent online. This will return the full key value pair result
returned by the Payment Server. May pass the ttid as either the
UniTerm-returned ttid or the Payment Server ttid as retrieved from
u_standin=listresp

delresp Purge the Payment Server response for a stored transaction that
was successfully sent online. May pass the ttid as either the
UniTerm-returned ttid or the Payment Server ttid as retrieved from
u_standin=listresp

5.2.4 ChipTab Actions (u_tab)

Note: ChipTab requires additional server-side licensing. The same Store and Forward
license as required for Stand-in processing is also required for ChipTab support. If already
performing stand-in, then no additional licensing is necessary.

The table below contains the descriptions of each possible ChipTab action.

u_tab description

open Open a tab and capture customer card data. A TTID will be returned
on success which is used to reference the tab for follow up sub actions.
The TTID will be prefixed by 'U' to indicate the TTID is associated with
UniTerm.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 59

This takes the same parameters as a txnstart would take such as
u_device, u_devicetype and so on.

Note: An amount is NOT specified on open.

close Close an existing tab. If a device (via u_device and u_devicetype
is not specified this works the same as force closing a tab. When using
a device the customer will be prompted to accept the amount and sign if
necessary. Must specify the ttid returned during open.

If an amount is not already associated with a tab (by updating the tab) it is
required to pass the amount. An amount can be passed even if an amount
is on file and will be used instead of what is on file. u_up_amount can be
used when closing a tab.

force_close The transaction is sent directly to the Payment Server without customer
interaction. Useful when a customer leaves without explicitly closing their
tab. See close for details about required and optional parameters.

update Update metadata on file associated with a transaction by specifying the
ttid associated with the tab. These fields can be updated:

• amount

• cashbackamount

• clerkid

• comments

• custref

• examount

• ordernum

• ptrannum

• stationid

• tax

Additionally, tabs can have the stored amount increased or decreased using
the u_up_amount key. Positive numbers will increase and negative will
decrease. This is useful if the POS wants UniTerm to track the tab amount
instead of tracking itself.

For example, the current amount is $15.00. Sending u_up_amount=2.00
will change the current amount that is stored to $17.00. Next, sending
u_up_amount=-3.00 will reduce the amount to $14.00.

Note: u_up_amount is different than amount. Amount is
the total and sending this key will replace the current value.
u_up_amount modifies the current amount.

void Deletes a tab. The tab is closed but never sent online for authorization.
Must specify the ttid from the open request.

list List all tabs for the user returning a CSV result. These keys can be used
to alter the query results (these should align with query parameters as
accepted by the Payment Server):

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 60

• ttid

• bdate

• edate

• timestamp

• type - (action)
• amount

• examount

• tax

• card - (cardtype)
• pclevel

• account - (last 4)
• expdate

• cardholdername

• ordernum

• custref

• ptrannum

• clerkid

• stationid

• comments

The resulting CSV will contain these headers:
ttid,proc,type,entrymode,card,pclevel,account,amount,

cardholdername,clerkid,comments,custref,expdate,

examount,cashback,ordernum,ptrannum,stationid,tax,

timestamp

totals Total number of open tabs and total tracked amount of across all tabs. The
total amount is only useful is using UniTerm to track the total for each
tab by utilizing u_up_amount. If the POS is tracking amount itself and
only sending the amount when closing the tab the aggregate total amount
will most likely be $0.00 and not accurately reflect the outstanding total
amount. Will return these result keys:

• num_trans - Number of transactions on file that have not yet been
forwarded

• total_amount - Total dollar amount (sum) of transactions on file, not
yet forwarded

5.2.5 Interchange/Rate Qualification Requirements

UniTerm cannot generate all the parameters necessary for proper interchange qualification.
An integrator must ensure they are passing all the required parameters for their industry, card
brand, or special processing requirements. In general, there are a few parameters of greater
importance than others, those that will apply to all merchants that integrators need to ensure
they are aware of. For a complete list of parameters accepted, please reference the Monetra
Client Interface Protocol Specification.

The table below contains a list of the most important parameters, please keep in mind this is
not a complete list:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 61

Key Required When Description

nsf Card Present Required value: yes

Approve transactions even if there are insufficient
funds (NSF). Will result in a partial approval if there
are insufficient funds, an authamount response
parameter will be returned for partial authorizations.
When a partial authorization is received, a merchant
should request another payment method for the
remaining funds. It is acceptable to request a reversal
if no additional payment methods are possible.

All card brands are requiring merchants support
partial authorizations, merchants can be subjected to
fines. Some issuers may return partial approvals even
without this flag because of the requirements in place.

laneid Card Present The lane ID is a Mastercard requirement that each
register or lane at a merchant's location be uniquely
identified. This should be a numeric value no more
than 8 digits in length, however some processors
cannot support more than 2 or 4 digits. It should be
sent on all transactions as it is not possible to know the
card type prior to a request to UniTerm.

ordernum Restaurant, Card
Not Present, Level
2

A merchant order number is required on all card not
present (mail order and ecommerce) transactions,
Restaurant, and all Level2 cards such as purchase
or corporate cards. Since it is not possible to know
the card type prior to a request to UniTerm an Order
Number should be sent on all transactions.

An order number is normally alpha-numeric up to
25 characters, however for restaurant a 6 digit order
number should be used

examount Restaurant Extra Amount - Tip Amount. If a tip amount is known
at the time of sale it must be populated, if using
UniTerm's built-in tip-prompting, this field should not
be passed as UniTerm will populate it.

zip Key Entered All key entered transactions should include at least a
billing zipcode for best rate qualification. Often this
is best accomplished by passing a u_flags of AVS,
however there may be cases where the billing zipcode
is already on file and will be presented separately.

healthcare HSA, FSA,

HRA-qualified
transactions

If attempting to perform a health care-qualified
transaction, this must be indicated. Should also send
rxamount, dentalamount, transitamount,
clinicamount, visionamount, or otheramount if
available.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 62

5.2.6 Shared Secret/HMAC handling

A shared secret is used to authenticate commands that do not authenticate using a
Payment Server user. It is required to use a shared secret for remote connections
(localonly=no) if unauthenticated requests need to be used. Authenticated requests such
as u_action=txnrequest do not use the shared secret, even if originating outside the local
machine.

The shared secret is used as the key to generate a transaction-specific HMAC-SHA256
parameter sent with the requests to UniTerm. A u_id must be sent with transactions that
require using the shared secret.

The following key value pairs are required when using a shared secret, their values are
concatenated together for the HMAC calculation:

• u_action: UniTerm action being performed
• u_id: Unique identifier for this transaction
• u_req_sequence: A sequence number that should not repeat
• u_req_timestamp: Unix Timestamp. Must be within 1 minute of the UniTerm server's

time.

The u_req_hmacsha256 parameter is sent with the calculated HMAC-SHA256 value from the
above calculation.

For example, assuming a transaction with these fields:

u_action=version
u_id=1
u_req_sequence=1202
u_req_timestamp=1509043043

would use version112021509043043 as the input to the HMAC-SHA256, and if the shared
secret is secret the HMAC would calculate to:

6E6C0CDF15E43DACDFB7DC24598EFF95FE3897AF0FF6917666DC454B0437FE0D

For more information on HMAC calculation, please reference Appendix B.

Note: For u_action=modifyconfig requests, the sharedsecret_mc configuration value
will be used instead.

5.3 UniTerm Response Parameters

The UniTerm module will return all standard response tags from the Payment Server such
as code=, cardtype=, and so on. The additional tags listed below are for transaction flow
handling, please see the EMV Receipt section for additional tags that may be returned specific
to receipt formatting.

PARAMETER VALUE

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 63

u_emv_chip_malfunction (yes or not sent) = Indicates that there was a chip
malfunction during EMV Complete. Note: Certain card
brands require a note on the receipt stating there was a
chip malfunction.

u_need_signature (yes or not sent) = Payment Server returns rcpt_emv_cvm
which can have a value of "sig" saying signature is
required. The u_need_signature means that a signature is
required and it should be printed/obtained from the paper
receipt. If an EMV requires a signature and one was not
captured electronically, this flag indicates it should be
obtained via a paper receipt.

u_errorcode See section below.

u_cancelable u_action=status only. Yes or No. Indicates if the
current transaction state will allow a cancel to be sent.
This is useful for showing and hiding a cancel button
within an integration's GUI.

trackdata u_action is txnrequest, txnstart, or cardrequest
only. Also requires the ini configuration of
unsupportedcard=yes. Will only be returned for non-
financial cards that are returned unencrypted from the
reader. Facilitates the use of manager cards as well as in-
store private label gift systems that do not flow through
the Payment Server. The u_errorcode returned with
the response will always be NONFINANCIAL. Support
during a txnrequest/txnstart is tailored to the use of
private label gift cards and will only be returned when the
cardholder selects GIFT from the payment type selection
screen.

serialnum u_action=deviceinfo only. Serial Number of
connected device.

device_manuf u_action=deviceinfo only. Device Manufacturer.

device_model u_action=deviceinfo only. Device Model Name.

device_app u_action=deviceinfo only. Application running on
connected device.

device_appver u_action=deviceinfo only. Version of the application
running on the connected device.

device_kernver u_action=deviceinfo only. EMV Level2 kernel
version of the connected device.

device_encryption u_action=deviceinfo only. Encryption type used by
device, if any.

line_len u_action=deviceinfo only. Hardware printers
only. Number of characters per line (excluding new line
characters) that can be printed on the receipt.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 64

u_needreboot u_action=deviceupload only. Will return "yes" when
a device reboot is needed for the action performed to take
effect.

u_signature u_action=reqsignature only. Will return base64-
encoded TIFF data representing the signature captured by
the device.

u_confirmed u_action=reqconfirm only. Will return "yes" or "no"
depending on if the user confirmed the dialog.

u_input u_action=reqinput only. Will return the user-entered
data.

u_selection u_action=externalselect only. Will return the id of
the customer's selection.

u_tip u_action is txnrequest, txnquick, or txnfinish.
Will return the tip amount chosen by the cardholder.

u_cashback u_action is txnquick or txnfinish. Will return the
Cash Back amount chosen by the cardholder.

u_wasfood u_action is txnrequest, txnquick, or txnfinish.
Will return a boolean value indicating if the cardholder
selected EBT Food Stamps (SNAP).

u_status u_action is status. Machine readable status code. See
UniTerm Status Codes.

u_represent u_action is status. Machine readable reason code for
why card representment is being requested. See UniTerm
Representment Codes.

u_flowflags u_action is txnrequest, txnstart, or txnfinish.
Pipe-delimited flags to provide integrators more insight
into possible actions UniTerm has taken.

• SIGCAPTURED - Signature was captured
• REVERSED - The transaction was approved but then

reversed. This is typically due to the customer canceling
the transaction, or the card declined the transaction.

u_standin If transaction was the result of a Stand-in, this response
parameter will be returned with a value of yes.

u_cardclass The card class associated with a transaction. In most cases
this should be ignored as a more specific card type is
returned by the cardtype response parameter, however
with EBT transactions the card class is used to indicate if
a Cash Benefits or Food Stamps (SNAP) transaction is
being performed. Possible responses:

• CREDIT - Credit Card
• DEBIT - Debit Card
• GIFT - Gift Card
• EBTFS - EBT Food Stamps (SNAP)

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 65

• EBTCB - EBT Cash Benefits

u_barcode u_action is readbarcode. The resulting barcode from a
successful read.

cashdrawer u_action is devicecondition. Cash drawer status
if available. Possible values are: open, closed, na, or
unknown.

printer u_action is devicecondition. Printer status if
available. Possible values are: na, idle, printing,
paper_out, paper_low, paper_jam, offline, or
cover_open.

u_rcpt_*cust_* Series of customer-specific receipt sections. See
Appendix C for more information.

u_rcpt_*merch_* Series of merchant-specific receipt sections. See
Appendix C for more information.

5.4 UniTerm Error Codes

Errors will be returned in the u_errorcode field. Each error code may be used for more
than one error type. Please see the verbiage response for more details. Note: On a successful
transaction the u_errorcode will be set to SUCCESS but that only indicates communications
with the Payment Server were successful. It does not mean the transaction was approved.

u_errorcode definition

FAILURE Generic Failure

SUCCESS UniTerm successfully processed the transaction. This does not,
however, mean the transaction was approved.

MISSING_PARAM A required parameter was missing.

INVALID_PARAM A specified parameter was invalid

PENDING_TRAN pending transaction already in progress

UID_NOT_FOUND A u_id was specified on a status or cancel request and no such
u_id is actively being processed.

NONFINANCIAL The card presented is not a financial card. This code will be
returned when requesting and returning trackdata for non-financial
cards when the configuration of unsupportedcard=yes is set.

INVALID_USE Typically means parameters specified should not have been
specified together.

INTERNAL_ERROR UniTerm has encountered an internal problem.

PERMISSION_ERROR The user account within the Payment Server was misconfigured.

MONETRA_ERROR There was an error communicating with the Payment Server.

MONETRA_PROC_ERROR The processor returned an error.

MONETRA_DATA_MISMATCHData received from the Payment Server is in wrong format or
expected data is missing.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 66

MONETRA_CONNFAIL Connection to the Payment Server failed.

MONETRA_TIMEOUT Payment Server response timed out.

DEVICE_INUSE The device specified is being used by another transaction.

DEVICE_ERROR There was an error communicating with the card entry device.

BAD_READ The device returned a card read error.

MAC_FAILURE The transaction was rejected because the MAC returned from the
processor did not match the expected value.

EMV_CARD_DENY The card locally declined the transaction.

EMV_CARD_REMOVED The card was removed before the end of the transaction.

CARD_NOT_SUPPORTED The card presented was not supported.

DEVICE_NOT_LOADED The device needs to be loaded before it can run EMV transactions.

FALLBACK_NOTALLOWED There was an error reading the chip and the card brand rule does
not allow the card to be re-presented via another means.

CANCELED User canceled request

TIMEOUT Timeout waiting for user input or device response.

TRY_AGAIN Transaction cannot be completed at this time, retry.

DBFAILURE Database has encountered an error.

INI_CANNOT_FIND The uniterm.ini could not be found.

INI_CANNOT_READ The uniterm.ini is not readable by the UniTerm process.

INI_CANNOT_PARSE The uniterm.ini format is invalid.

INI_CANNOT_WRITE The uniterm.ini is not writable by the UniTerm process.

INI_INVALID_PARAM The uniterm.ini has an invalid configuration parameter.

UNSUPPORTED_ACTION The requested action is not available on the device.

5.5 UniTerm Status Codes

Status codes returned via the u_status response parameter. Each status code may be a
generalization used for more than one phase of the transaction flow. Please refer to the
verbiage response parameter for a more descriptive human-readable status message.

u_status definition

WORKING Generic status say UniTerm is processing.

CARD_IST Waiting for card presentation (Insert, Swipe, or Tap). With an
EMV card, the card could be inserted and waiting for customer to
choose language.

CARD_IT Waiting for card presentation (Insert or Tap). With an EMV card,
the card could be inserted and waiting for customer to choose
language.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 67

CARD_IS Waiting for card presentation (Insert or Swipe). With an EMV
card, the card could be inserted and waiting for customer to
choose language.

CARD_ST Waiting for card presentation (Swipe or Tap), non-EMV.

CARD_I Waiting for card presentation (Insert only). With an EMV card,
the card could be inserted and waiting for customer to choose
language.

CARD_S Waiting for card presentation (Swipe only).

CARD_T Waiting for card presentation (Tap only).

EMVFLOW EMV processing. Typically waiting for customer to enter their
PIN.

KEYED Waiting for keyed account and related (zip, cvv).

PIN Waiting for PIN entry. This may not be presented for EMV cards
as the device may handle this internally.

CARDCLASS Waiting for card class selection (Debit, EBT, Gift prompting)

TIP Waiting for tip entry.

CASHBACK Waiting for cash back entry.

SIGNATURE Waiting for signature.

EMVCOMPLETE EMV processing is completing.

CONFIRM Waiting for user confirmation.

CONFIRMAMOUNT Waiting for user to confirm the transaction amount.

CONFIRMFOOD Waiting for user to confirm the food amount.

CONFIRMRETRY Waiting for user to confirm to retry the transaction after a failure.

INPUT Waiting on customer input (e.g. phone number).

MONETRA Communication with the Payment Server. Typically waiting on a
response from the Payment Server.

REMOVECARD Waiting for card removal.

REVERSAL Reversing transaction (typically due to card decline).

DEVICEPRINT Printing receipt on device.

DEVICEOPEN Waiting for device to open.

DEVICECLOSE Waiting for device to close.

DEVICEREBOOT Rebooting device.

CANCEL Canceling transaction or operation.

5.6 UniTerm Representment Codes

Representment codes returned via the u_represent response parameter. This response
parameter gives a reason that card representment is being requested.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 68

u_represent definition

BAD_INSERT Chip Read Failure. Could be bad card, card inserted backwards or
upside-down, or customer removed the card too early.

BAD_SWIPE Failure reading Magnetic card data. Possibly damaged card or
customer swiped too quickly.

BAD_TAP Failure reading NFC card data. Possibly damaged card or
customer did not hold the card close enough to reader for a long
enough period of time.

CHIP_CARD_SWIPED Customer attempted to swipe a chip card instead of inserting it.

OVER_TRAN_LIMIT_TAP Transaction exceeds maximum dollar amount, tap is not allowed.

RETRY Retry for some other generic failure reason.

UNSUPPORTED_CARD Card presented is not usable. Try a different entry method or card.

5.7 Tip Prompting

UniTerm supports prompting the cardholder for a tip amount at the time of payment when the
Payment Server merchant account configuration merch_tippercent setting is configured
and the NOTIP u_flags parameter is NOT provided.

When a customer has chosen to add a tip amount to a transaction, the amount provided by
the POS to UniTerm will be incremented to reflect the tip amount and the examount will be
populated with the tip amount when the transaction is sent to the Payment Server.

In the response returned by UniTerm, the tip amount will be provided to the POS in the u_tip
response parameter.

Note: Special care should be taken to validate if the authamount response parameter is
returned, indicating a partial authorization occurred, that split tender operations can occur.
When prompting for a second payment method, an integrator should use the NOTIP u_flags
in order to avoid tip prompting on the second method of payment, and respect the returned
u_tip response for the chosen tip amount from the original response.

5.8 Cash Back Prompting

UniTerm supports prompting a cardholder if they would like to request Cash Back when
presenting a Debit or EBT Cash Benefits card for payment. UniTerm will automatically
perform such prompting if the [uniterm] cashbackamount configuration parameter is
set and the NOCASHBACK u_flags parameter is NOT set. The Payment Server merchant
configuration parameter of merch_cashbackmax can be used to limit the amount of Cash
Back that can be requested.

When a customer has chosen to request Cash Back with a transaction, the amount provided
by the POS to UniTerm will be incremented to reflect the Cash Back amount and the
cashbackamount parameter will be populated with the Cash Back amount when the
transaction is sent to the Payment Server.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 69

In the response returned by UniTerm, the Cash Back amount will be provided to the POS in
the u_cashback response parameter.

Note: Special care should be taken to validate if the authamount response parameter is
returned, indicating a partial authorization occurred. If the returned amount is less than the
requested amount plus u_cashback then the POS must decide on the proper course of
action. For instance if the authamount is greater than requested, but less than the amount
plus u_cashback then partial Cash Back would be provided to the cardholder. Otherwise if
the authamount is less than the requested amount, then the u_cashback returned should be
completely ignored and the POS would need to prompt the cardholder for another method of
payment.

5.9 EBT Processing

UniTerm supports prompting if the card presented is an EBT card. If the u_foodamount
parameter is populated with a non-zero dollar amount indicating the amount of the transaction
that applies to qualified food purchases (or for txnstart with a value of maybe), then
the customer will also be prompted if they would like to use Food Stamps (SNAP) or Cash
Benefits to complete the transaction. When the cardholder makes the selection, UniTerm
will internally rewrite the action=sale request parameter to action=ebtfssale or
action=ebtcbsale as appropriate.

For txnstart transactions where u_foodamount=maybe, the integrator must send a valid
u_foodamount value with txnfinish otherwise the transaction will be aborted.

If Food Stamps (SNAP) was selected, u_wasfood will be returned as yes/true to indicate
this. If the requested amount is greater than u_foodamount, then a partial authorization
will be returned (as indicated by the the authamount response parameter) indicating the
amount of the authorization was less than the requested. This returned authamount may be
less than the u_foodamount if there are insufficient funds, otherwise it will be equal to the
u_foodamount requested.

If a partial authorization is performed, the merchant should perform a split-tender operation
and prompt for another method of payment for the remainder, which may also be EBT. The
requested amount and u_foodamount need to be adjusted accordingly on the next request
based on the amounts previously authorized.

5.10 QuickChip

The card brands have coined the term QuickChip to refer to the modification of the EMV flow
to reduce the amount of time a card must stay in the terminal, allowing the card to be presented
as early as possible. The goal of QuickChip is to ensure no additional delay to the overall
checkout process is incurred for EMV transactions when compared to an MSR transaction. It
also is more similar to the existing MSR flow that customers may be acquainted with.

QuickChip is only available in the US Market, the card brands have not yet allowed this flow
in other markets.

In order to use QuickChip with UniTerm, an integrator must use the txnstart and
txnfinish messages rather than the txnrequest message. When the merchant opens the

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 70

order to add items for purchase, they will immediately send the txnstart message, which
will not contain an amount since the final amount is not yet known. Once the card holder
has presented their card and completed any necessary cardholder verification, and removed
their card, a response will be returned to the merchant. Once the final amount is known, the
merchant will send a follow-up txnfinish message with the final amount and the transaction
will go online for approval and the merchant will be returned all the receipt data just as if the
request was a txnrequest.

If the amount is known at the time of the order, then the non-QuickChip txnrequest message
should be used.

5.11 Pay at the Table

UniTerm provides all the tools needed for an integrator to support Pay at the Table. Though
the method an integrator might choose can vary from system to system, we have outlined
a suggested flow that should work for most environments when integrators choose to use a
payment device specifically meant for pay at the table without necessitating the need for the
use of an additional device such as a tablet. Those integrators that choose to use a tablet for
pay at the table will not use the information contained in this section as the flow, in relation to
UniTerm, would more closely resemble the standard Pay at the Counter flow.

The below flow assumes the customer will be entering their own invoice number, but a clerk
may choose to perform that step on their behalf if there is only one ticket associated with the
table.

• Print one or more detailed meal tickets for the table (split checks), and ensure a unique
numeric order number for the day appears on the ticket. It is suggested these ticket numbers
be 6 digits in length and randomly, not sequentially, generated to help prevent typos
matching another open ticket. Deliver the tickets along with a payment device to the table,
such as an Ingenico IWL250 that is wireless and contains a built-in receipt printer.

• Send a u_action=reqconfirm request with a useful message/instruction to the user such
as "u_message=Enter ticket number from top of ticket on next screen.",
wait on a response. Ignore the actual response returned.

• Send a u_action=reqinput with u_input=INVOICENUM and wait on a response.

• Look up the requested Invoice, and assuming it is found and not already paid, request the
user confirm it is the right ticket and amount using u_action=reqconfirm, when the user
accepts the dialog, precede to the next step, if rejected, start over. If the invoice was not
found, use u_action=reqconfirm to send back an error and restart the flow.

• Start the payment flow with u_action=txnrequest as you would in a normal clerk-
attended environment. Tip prompting, etc will take place if UniTerm is configured to do so.
On error or user cancellation, restart the flow, otherwise continue to the next step.

• If a signature is required, and the device does not support signature capture, format a receipt
for the printer size on the device and send u_action=deviceprint with the u_text set
to the plain text, pre-formatted, MERCHANT receipt data with a signature line.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 71

• If a merchant receipt was printed, and the device being used does not have an automatic
cutter, then you should prompt the user for how to tear the receipt then press enter to
continue using the u_action=reqconfirm, and ignore the result of the request.

• Format a receipt for the printer size on the device and send u_action=deviceprint with
the u_text set to the plain text, pre-formatted, CUSTOMER receipt data (no signature
line).

• Start the flow over for more tickets.

5.12 Parking: Card-In/Card-Out Entry and Exit Gates

Using a Credit Card as the identity token rather than a printed ticket is a common practice
at some parking garages. Due to security requirements, it is highly desirable to keep the
cardholder data itself outside of the parking system and use unique identifiers (tokens) from
the Payment System for this purpose. Due to the complexities of the EMV transactional flow
it may not be obvious how to accomplish this without requiring multiple card presentments.
We have outlined our recommended best practices for implementing this functionality with
UniTerm.

1. A customer arrives at the entry gate.

a. A txnrequest is performed with these key/value pairs:

u_action=txnrequest
action=admin
admin=recurringadd
type=store
matching_token=yes

Note: Using matching_token in the request is a required part of this process to ensure a
new token is not created if the card number is already in the system.

b. Customer will see "administrative" on the device which indicates it is not a financial
transaction they are performing at that moment

c. A token response parameter is returned by UniTerm which the parking system will
keep and use as the unique identifier.

2. Customer leaves parking facility and is at the exit gate.

a. A txnstart (not txnrequest!), is performed with these key/value pairs:

u_action=txnstart
action=sale
u_id=$uniqueid
tokenize=yes
matching_token=yes

b. A token will be returned in the response. This token will be used to match against
the parking system's entry gate list to determine the amount owed. The device will
automatically show "Please Wait" until the next step.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 72

c. Send txnfinish using the u_id passed during txnstart and the determined amount
from the prior step

u_action=txnfinish
u_id=$uniqueid_from_txnstart
amount=$parkingfee

The customer's card will be charged as card present and the token will not actually be
used for the transaction itself as the card was already presented to the exit gate so it has
access to the full EMV data necessary.

d. For "house-keeping" purposes, it may be desirable to perform a recurringdel request
to clean up the card on file when no longer needed.

5.12.1 Considerations

Some issuers will assign the same card number to joint accounts. The system recording the
token entries needs to account for seeing the same token enter multiple times. For example, If
it's an airport and the cardholders take two cars because it's a large family you could end up
with two enter events for the same card.

Another situation to consider is if the customer's card is lost, stolen or otherwise compromised
while they're away, again think airport parking. They may not have or be able to use the card
they entered with when they leave.

5.13 Signature Capture

During a transaction, if UniTerm decides a signature is necessary to complete a transaction and
the device is capable of capturing a signature, UniTerm will automatically prompt for signature
and save it with the transaction. The signature will be kept on file for as long as the record of
the transaction is kept on file. All signatures are stored in the TIFF image format within the
Payment Server and may be retrieved via the action=admin, admin=getimages function
call. Please see the "Protocol Addendum: Signature Capture/Storage" for the Payment Server
for more information.

Note: Some devices, especially mobile devices, or web browsers may not natively support
displaying the TIFF image format. Recent versions of the Payment Server support conversion
to PNG when requesting a getimages request by passing image_format=PNG with the
request. Otherwise if a different image format is desired, or using an older version of the
Payment Server, it is recommended to use an open source library such as ImageMagick to
assist in the conversion for display purposes.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 73

6 EMV transactions with UniTerm

6.1. Transaction Flow and Prompting .. 73
6.1.1. Swipe prompts to insert ... 73
6.1.2. Tap prompts to insert .. 73
6.1.3. Insert prompts to swipe ... 73
6.1.4. PIN required on Credit Cards .. 74
6.1.5. Signature not requested ... 74
6.1.6. Tap transaction run as MSR on chip card, no insert requested 74
6.1.7. Immediate decline without contacting the processor .. 74

6.2. Common questions .. 74
6.2.1. How do I add a gratuity/tip to a transaction? .. 74
6.2.2. What industries are certified for EMV? .. 75

EMV transactions, by nature, are much more complex than traditional magnetic stripe
transactions. UniTerm hides this complexity from the application software. In the case
of magnetic stripe and EMV transaction, the application software will send the request to
UniTerm. The device capabilities (EMV for example) will be determined by UniTerm, along
with the merchant account configuration. From these UniTerm will handle the appropriate
prompting and flow aspects related to the determined capabilities. The application software
simply needs to send a u_action=TXNREQUEST and let UniTerm handle the rest.

6.1 Transaction Flow and Prompting

Integrators unfamiliar with EMV may notice some specific flow cases that seem counter-
intuitive at first. This section is meant to address these EMV-specific cases.

6.1.1 Swipe prompts to insert

If a chip-enabled card is swiped on an EMV-capable terminal, it is mandated that the user be
prompted to insert the card. This is an EMV certification requirement which cannot be lifted
and it is meant to train consumers to insert their cards and to prevent fraud.

6.1.2 Tap prompts to insert

There are certain thresholds negotiated between the card and terminal which may request a
chip-enabled card that is presented as a tap transaction be inserted instead. When this occurs,
it can be due to a number of factors including fraud mitigation, or the card has determined
it needs to be updated (for insert transactions, an issuer can choose to return issuer scripts to
remotely reprogram cards).

6.1.3 Insert prompts to swipe

If a chip-enabled card is prompted to be swiped, this is usually an indication that there was
a chip malfunction and the cardholder should have their card replaced, called a technical
fallback. It is expected at some point in the future, technical fallback will be disallowed due to

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 74

fraud concerns. The other possibility is if the application id in use by the card is not supported
by the terminal.

6.1.4 PIN required on Credit Cards

The cardholder verification method is negotiated between the card and the terminal. If both
the card and terminal support PIN entry, it may be chosen as the desired verification method.
Consumers in the US may not expect to enter a PIN on their credit cards, but it is common
among foreign cards.

6.1.5 Signature not requested

The cardholder verification method is negotiated between the card and the terminal. They may
negotiate Signature, PIN, or what is called NoCVM which means no cardholder verification is
required for the transaction. The decision is strictly made based on the terminal capabilities
and card capabilities.

6.1.6 Tap transaction run as MSR on chip card, no insert requested

It is a requirement by the card brands that if a chip-capable card is presented as a tap that the
card NOT be prompted for insertion. This can happen due to a terminal not being configured
for contactless EMV support, or if a chip is malfunctioning.

6.1.7 Immediate decline without contacting the processor

EMV cards have the ability to make decisions about the transaction before it is even processed.
From time to time a merchant may see a chip card presented that results in an immediate
decline before requesting cardholder verification or connecting to a processing institution. This
could happen because the card has exceeded some internal threshold, or the card has received a
remote script on a previous transaction to explicitly block transactions, such as a card block or
application block.

6.2 Common questions

6.2.1 How do I add a gratuity/tip to a transaction?

Tips are added to EMV authorizations just as they are with MSR authorizations, nothing has
changed in the US rules. An integrator will simply send a preauth with the order amount,
then when the tip amount is known, a preauthcomplete will be sent with the final order
amount and examount will contain the tip amount. However, if the tip is greater than 20%,
merchants should obtain a new authorization for the tip according to the card brand rules. Of
course if the tip amount is known prior to the authorization, the tip amount should be included
a part of the authorization request.

There is much confusion regarding tips in the US market with the introduction of EMV Chip
and Pin, most of this is due to European rules which state the gratuity amount must be sent

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 75

with the initial authorization request. This does not currently apply to the US market, however
there is discussion that Mastercard may start disallowing tip modification in the future for Chip
cards when using PIN verification (but, presumably, not when using Signature or NoCVM
verification).

Please refer to the below card brand documentation for more information:

• http://www.mastercard.com/us/merchant/pdf/TPR-Entire_Manual_public.pdf (page 70)
• https://www.visa.com/chip/merchants/grow-your-business/payment-technologies/credit-

card-chip/docs/Play_it_Smart_With_US_Chip_Payment_Transactions.pdf (page 3)

6.2.2 What industries are certified for EMV?

EMV doesn't define certifications by industry, the industry-specific data is outside of the
EMV-relevant data. Instead EMV works on what they call Terminal Types.

In general, there are 2 relevant terminal types, and those are "Attended" and "Unattended". For
"Attended" terminal types, this is where there is a clerk present such as a supermarket, normal
retail location, or restaurant. "Unattended" terminal types are used in Self Serve terminals such
as kiosks or fuel pumps.

Examples of "Attended" industries are "Retail", "Restaurant" and "Lodging".

Examples of "Unattended" industries are "Retail Self Serve" and "Automated Fueling".

Please see the Certifications section for what devices and processors are certified for
"Attended" vs "Unattended" to see what is currently supported. As long as the industry you
support falls into the "Attended" or "Unattended" category that has an EMV certification for
the given device and processor you choose, and the Payment Server itself supports the desired
industry for the given processor, then it is a supported configuration.

http://www.mastercard.com/us/merchant/pdf/TPR-Entire_Manual_public.pdf
https://www.visa.com/chip/merchants/grow-your-business/payment-technologies/credit-card-chip/docs/Play_it_Smart_With_US_Chip_Payment_Transactions.pdf
https://www.visa.com/chip/merchants/grow-your-business/payment-technologies/credit-card-chip/docs/Play_it_Smart_With_US_Chip_Payment_Transactions.pdf

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 76

7 Storage, Key Management, and Logging

7.1. Database Storage, Security, and Key Management ... 76
7.2. Logging ... 77
7.3. External Data Storage .. 77

UniTerm v9 introduced a database backend for caching merchant and transaction data for
offline processing, as well as logging facilities for monitoring and inspection of transaction
processing.

7.1 Database Storage, Security, and Key Management

UniTerm supports data storage to just about any database backend, though the most commonly
deployed is SQLite due to its zero-configuration nature. All sensitive data is encrypted prior
to hitting the database layer using field-level encryption. Database functionality is facilitated
by the mstdlib open-source library available at: https://github.com/Monetra/mstdlib. The
location of data storage is defined in the database configuration Section 4.2.4.

The UniTerm database serves two purposes. The first purpose is as a caching front-end for
all of the loading data necessary to operate a terminal. This includes, but is not limited to,
merchant metadata (name, address), EMV terminal parameters (AIDs, CAPKs), and card BIN
tables. The second purpose is for Stand-in authorizations and ChipTab support, where sensitive
cardholder data is stored until authorization, as well as tracking of metadata after authorization.

Data is cached to disk from the Payment Server to limit necessary round-trips which may add
latency, especially if UniTerm is frequently stopped and restarted (as is the case on Mobile
devices to conserve power), as well as facilitating offline terminal loading. Cache refresh times
vary, but in general merchant-specific settings are refreshed every 24hrs and Payment-Server-
specific parameters such as large BIN tables may not be updated more than once per week.
UniTerm will forcibly re-cache merchant data if a u_action=deviceload request is sent.

For Stand-in and ChipTab support, sensitive cardholder data is stored encrypted using
AES-256-CBC in the stored_trans table per key/value pair. The AES key used is
an ephemeral key generated for that specific transaction, and is stored in the same
stored_trans table in the e_id key mapping which itself is encrypted using a merchant-
specific RSA public key retrieved from the Payment Server (but not private key which is
generated by and private to the Payment Server) utilizing its validated CardShield subsystem.
Once the transaction is encrypted, all in-memory traces are wiped and UniTerm can no longer
access the sensitive cardholder data which can now only be decrypted by the Remote Payment
Server instance holding the RSA private key. The merchant-specific RSA public keys are stored
in the stored_keys table and are rotated automatically every 10-12 days. After authorization,
all transaction request data is purged from the database. Data after authorization may be stored
in the Payment Server and is up to the administrator of the remote Payment Server system to
configure retention periods as per customer requirements.

Note: Even when using an encrypting reader, the encrypted output will be re-encrypted using
the above method before being stored to the database.

https://github.com/Monetra/mstdlib

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 77

For offline operation, requests must still be authenticated, therefore the last successfully
validated password for the merchant is recorded to the user table using the secure
hashing mechanism PBKDF2-SHA256 and the number of rounds as specified in the
password_iterations configuration parameter (default is 10000). Once the password has
been validated the first time, it is then cached in memory in an AES-256-CBC encrypted hash
table to reduce the CPU load required in re-computing the hash for verification while still
staying secure from common attack vectors such as memory scrapers.

Note: There is no ability to control this card storage or key rotation behavior, it is always
implemented as per above. However if a forced key rotation is desired sooner than the normal
10-12 day period, then the merchant can delete the entire UniTerm database which will force
a new key to be generated for the UniTerm instance within the Payment Server.

7.2 Logging

The UniTerm log is a multi-purpose log format. It provides insight into the operations
of UniTerm as well as a detailed audit trail of every operation performed by an end user,
including, but not limited to, IP address, request types along with request and response
parameters, and duration of connection. UniTerm's logging does not exist to meet any PCI
requirements since UniTerm does not provide any sort of access to cardholder data that would
require authentication and is generally not relevant to PCI, but rather for debuggability and
insight into system function.

The UniTerm log will never log sensitive merchant or cardholder data, any data that may be
considered sensitive is completely masked in the logs.

UniTerm facilitates centralized logging via remote syslog facilities, either by using a system-
provided syslog API, or by directly supporting Syslog over TCP. Please see Section 4.2.5 for
more information on available logging configuration parameters.

PCI DSS mandates that logging of all modifications to system level objects is done on systems
containing payment applications. It is required that merchants deploy a logging facility
such as file integrity monitoring on such payment systems to comply with this requirement.
UniTerm does not provide such a facility directly, and is an external requirement which must
be implemented by the merchant.

Note: There is no ability to configure UniTerm to log in an insecure manner. The default
logging levels are recommended and validated to be PCI compliant.

7.3 External Data Storage

If the merchant backs up the UniTerm database or otherwise stores sensitive data outside of the
controls put in place by UniTerm or the Payment Server, it is the merchant's responsibility to
do so in a PCI DSS compliant manner for the customer-defined retention period.

Note: Merchants must not back up any swap files as they may contain sensitive cardholder
data meant to only exist in volatile memory.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 78

8 UniTerm Protocol Examples

8.1. EMV Transaction [device load] .. 78
8.1.1. UniTerm Request Data .. 78
8.1.2. UniTerm Response Data .. 78

8.2. EMV Transaction [Interac] ... 79
8.2.1. UniTerm Request Data .. 79
8.2.2. UniTerm Response Data .. 79

8.3. Transaction Request with EBT Food Stamp optional ... 80
8.3.1. UniTerm Request Data .. 80
8.3.2. GUI output ... 81
8.3.3. UniTerm Response Data .. 81

Several examples are provided below which describe how to use the UniTerm protocol.

8.1 EMV Transaction [device load]

8.1.1 UniTerm Request Data

PARAMETER VALUE

password test123

u_action deviceload

u_device USB

u_deviceidlemessage WELCOME

u_devicetype ingenico_cpx

u_flags DEVICEONLY

u_id 1182112391

username moneris_ipp320x:sub

8.1.2 UniTerm Response Data

PARAMETER VALUE

addltermcaps F000F0F001

addltermcaps_desired 6000F0F001

addltermcaps_loa F000F0A001

altered_termload yes

code AUTH

loa_id 3C

termcaps E0B8C8

termcaps_desired E0B8C8

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 79

termcaps_loa E0B8C8

termtype 22

termtype_desired 21

u_errorcode SUCCESS

verbiage Device loaded

8.2 EMV Transaction [Interac]

8.2.1 UniTerm Request Data

PARAMETER VALUE

action sale

amount 1.00

nsf yes

ordernum 899065992

password test123

u_action txnrequest

u_device USB

u_deviceidlemessage WELCOME

u_devicetype ingenico_cpx

u_flags DEVICEONLY

u_id 899065992

username moneris_ipp320x:sub

8.2.2 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXXXXX2145

auth 221093

batch 1

cardholdername Test Card 14

cardtype INTERAC

code AUTH

item 793

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 80

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_acct_type checking

rcpt_custom refnum:660136000010017930

rcpt_emv_ac 882D8427A268E214

rcpt_emv_actype TC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm pin

rcpt_emv_name Interac

rcpt_emv_tsi 7800

rcpt_emv_tvr 8000008000

rcpt_entry_mode C

rcpt_host_ts 072315151022

rcpt_issuer_resp_code 00

rcpt_resp_code 001

timestamp 1437678622

ttid 992

u_errorcode SUCCESS

8.3 Transaction Request with EBT Food Stamp optional

8.3.1 UniTerm Request Data

PARAMETER VALUE

action sale

amount 10.00

u_foodamount 5.00

nsf yes

ordernum 899065992

password test123

u_action txnrequest

u_device HID

u_devicetype ingenico_rba

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 81

u_id 899065992

username transarmor_isc250:sub

8.3.2 GUI output

8.3.3 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0027

auth 412303

batch 15

cardtype MCDEBIT

code AUTH

item 139

merch_id 0993

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_entry_mode S

timestamp 1437678765

ttid 200

u_errorcode SUCCESS

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 82

9 UniTerm Test Application

Included with the UniTerm software distribution is a test application known as "UniTerm
Tester". This test application is a simple graphical user interface which may be used to test
the various functionality in UniTerm. This utility should be used by developers exploring the
functionality of UniTerm as it will provide the request and response messages from UniTerm
as well as generate sample receipts for each request. The test utility can be found in the same
directory as the uniterm executable named unitermtester.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 83

10 UniTerm Code Examples

Code examples are provided help you understand how easy it is to integrate your application
with the UniTerm middleware. Please see Appendix E for complete code examples.

Examples are provided for the following languages:

• Microsoft C# using libmonetra

• Microsoft C# using XML and HttpWebRequest

• Java using libmonetra

• PHP using libmonetra

• Microsoft VB.Net using libmonetra

• Microsoft VBScript using XML and MSXML2

• Microsoft Visual Basic 6 using libmonetra

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 84

11 UniTerm Hardware Devices (Point of Interaction
Devices)

11.1. Supported POI Devices .. 84
11.1.1. Ingenico RBA and UPP information ... 85
11.1.2. Ingenico TCPX information .. 92
11.1.3. BBPos family information ... 92
11.1.4. ID Tech Augusta and Spectrum Pro (NGA) .. 93
11.1.5. ID Tech VP5300 information ... 93
11.1.6. Equinox Luxe information ... 94

11.2. Obtaining Devices .. 97
11.2.1. Where to source devices with appropriate loads and keys 97

Card data is captured at the point of sale via a magnetic swipe reader or, in some cases (such
as for telephone-based transactions), by manual entry of the card number via a keyboard, touch
screen, or key pad. The device where card data is captured is called the Point of Interaction
(POI) device or also may be referred to as the "point of capture" or "point of entry" device.

Note: The UniTerm module supports both encrypting and non encrypting POI devices. Using
the UniTerm module with non encrypting devices can remove the application software (such
as a POS application) from scope for the PCI Payment Application (PA-DSS) standard. Using
encrypting POI devices can also reduce or eliminate PCI requirements for merchants.

11.1 Supported POI Devices

The table below describes POI devices currently supported. The column marked
ENCRYPTION indicates the type of encryption the device supports (if any). CardShield
encryption can be performed by the Payment Server server while other types of encryption
must be preformed by the transaction processor. The column marked EMV are devices that
UniTerm can work with to perform EMV/Chip based transactions.

Note: UniTerm is currently only supporting devices which support EMV. This list may be
expanded in the future to support non-EMV devices. This list also does not include keyboard-
emulation devices (both encrypting and non-encrypting) which are supported when running in
GUI mode.

If you are using a previous version of UniTerm which supported additional non-EMV
devices, do not upgrade your version of UniTerm as those devices are not currently supported.

Model Device S/W u_devicetype Notes Encryption EMV

Ingenico

Ingenico
RBA family
(iPP320,
iSC Touch

250, etc)

RBA ingenico_rba USA CardShield, First
Data TransArmor

RSA, OnGuard

x

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 85

Model Device S/W u_devicetype Notes Encryption EMV

Ingenico
UPP/Tetra

family
(Lane/3000,
Lane/5000,

Lane/7000,

Lane/8000,
Link/2500,
Move/3500,

Move/5000,
etc)

UPP ingenico_upp USA CardShield
(Generic

Triple-DES)

x

iUP250

TCPX

CPX ingenico_tcpx Canada NONE x

BBPos/Anywhere Commerce

Chipper 2X

BT/Walker

C2X BT

CROS bbpos_cros USA CardShield x

WisePad 3S CROS bbpos_cros USA CardShield x

ID Tech

Augusta NGA idtech_augusta USA CardShield x

Spectrum

Pro

NGA idtech_spectrum

_pro

USA CardShield x

VP5300 NEO idtech_neo USA CardShield x

Equinox

Luxe

6200m,

Luxe 8500i

EPE equinox_epe USA CardShield x

11.1.1 Ingenico RBA and UPP information

11.1.1.1 RBA firmware versions and devices

The RBA family includes all Ingenico Telium2 devices that can run the RBA (Retail Base
Application) software. This includes, but is not limited to:

• iCMP

• iSMP companion

• iSMP4

• iWL250

• iPP320 - PCI PTS v3.x+ version

• iPP350 - PCI PTS v3.x+ version

• iSC Touch 250

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 86

• iSC Touch 350

• iSC Touch 480

• iUN - iUP250, iUR250, iUC150

• iUC285

The minimum technical version of the RBA software load supported is 14.0.6, though newer
is more preferred as there may be bug fixes or additional features available on newer releases.
There are two recommended versions depending on the EMV Certification being used, please
cross-reference the kernel number of the certification in use with the kernel associated with the
RBA version.

PCI Notice: Due to disclosed vulnerabilities in RBA, all deployments should upgrade to
23.0/1/2.44 or higher.

A list of recommended/supported versions:

• 23.52.06 - 5.38 kernel - UniTerm 9.11.0+ (current)

• 23.51.06 - 4.67 kernel - UniTerm 9.11.0+ (current)

• 23.50.06 - 5.26 kernel - UniTerm 9.11.0+ (current)

• 23.2.46 - 5.38 kernel - UniTerm 9.7.0+

• 23.0.44 - 5.26 kernel - UniTerm 9.3.0+ NOTE: Required this version or higher
for latest iSMP4 revision to prevent battery swelling.

• 23.0.44 - 5.26 kernel - UniTerm 9.3.0+ - "Unattended" series

• 23.1.46 - 4.67 kernel - UniTerm 9.3.0+

• 23.0.38 - 5.26 kernel - UniTerm 9.3.0+ - DO NOT USE
• 23.0.38 - 5.26 kernel - UniTerm 9.3.0+ - "Unattended" series - DO

NOT USE

• 23.0.24 - 5.26 kernel - UniTerm 9.3.0+ - DO NOT USE

• 23.0.28 - 5.26 kernel - UniTerm 9.3.0+ - "Unattended" series - DO

NOT USE

• 23.0.12 - 5.26 kernel - UniTerm 8.4.5+ - DO NOT USE

• 23.0.16 - 5.26 kernel - UniTerm 8.4.5+ - "Unattended" series - DO

NOT USE

• 21.5.6 - 4.67 kernel - UniTerm 8.3+ - DO NOT USE

• 23.0.2 - 5.26 kernel - UniTerm 8.4.5+ - DO NOT USE

• 23.0.4 - 5.26 kernel - UniTerm 8.4.5+ - "Unattended" series - DO NOT

USE

• 21.7.2 - 5.26 kernel - UniTerm 8.4+ - DO NOT USE

• 21.0.2 - 5.26 kernel - UniTerm 8.4+ - DO NOT USE

• 19.0.8 - 4.67 kernel - UniTerm 8.2+ - DO NOT USE

• 16.0.2 - 4.67 kernel - UniTerm 8+ - DO NOT USE

• 15.0.6 - 4.67 kernel - UniTerm 8+ - DO NOT USE

• 14.0.6 - 4.67 kernel - UniTerm 8+ - DO NOT USE

Note: Use of any version of RBA not explicitly listed as recommended is at the users own risk
and no guaranteed support can be provided. Some features might require newer versions of
RBA so it is always recommended to run the latest recommended release.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 87

11.1.1.2 UPP firmware versions and devices

The UPP family includes all Ingenico Tetra devices that can run the UPP (Universal Payment
Platform) software. This includes, but is not limited to:

• Lane/3000,5000,7000,8000

• Link/2500

• Move/3000,5000

A list of recommended/supported versions past and present are below:

• 6.81.06 - 9.01 kernel - UniTerm 9.11.0+ (current)

• 6.80.06 - 8.38 kernel - UniTerm 9.11.0+ (current)

• 6.81.04 - 9.01 kernel - UniTerm 9.10.0+

• 6.80.04 - 8.38 kernel - UniTerm 9.10.0+

• 6.71.00 - 9.01 kernel - UniTerm 9.9.0+

• 6.70.00 - 8.38 kernel - UniTerm 9.9.0+

• 6.61.00 - 9.01 kernel - UniTerm 9.8.0+

• 6.60.00 - 8.38 kernel - UniTerm 9.8.0+

• 6.51.01 - 9.01 kernel - UniTerm 9.7.0+

• 6.50.00 - 8.38 kernel - UniTerm 9.7.0+

• 5.08.05 - 8.38 kernel - UniTerm 9.4.0+

• 5.07.00 - 8.38 kernel - UniTerm 9.1.0+

Note: Use of any version of UPP not explicitly listed as recommended is at the users own risk
and no guaranteed support can be provided. Some features might require newer versions of
UPP so it is always recommended to run the latest recommended release.

11.1.1.3 Communication Methods

UniTerm supports communicating with RBA/UPP via these communication methods (given the
proper cables and add-on options from Ingenico):

• USB-HID - No drivers are necessary, select HID as the device connectivity in UniTerm. Not
available on UPP devices.

• USB<>Serial Conv - Requires Telium or Jungo drivers on Windows, will show up as
a virtual COM port and be used as a Serial device in UniTerm (Linux and MacOSX do not
need drivers, they will show up as serial ports).

• Serial - Settings: 115200 8N1 - No flow control
• Bluetooth - Android native, on Windows it should show up as a virtual COM port and be

usable as a Serial device in UniTerm. Only available in UPP as of 6.70.00 or 6.71.00.
• MFI - iOS native, Made for iOS, via BlueTooth. Not currently available on UPP devices due

to introduction of PCL layer, expected to be resolved as of UPP 6.8X.00.
• Ethernet - Both IP Server (UniTerm -> Device) and IP Client (Device -> UniTerm)

connectivity supported. IP Client mode also supports SSL/TLS.

Note: Not all devices support BlueTooth or USB-HID even if the menu lists it as an available
option.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 88

11.1.1.4 Device configuration

RBA devices can be configured by entering the management menu during device boot in order
to set up the communication method. When a device is shipped to you, it can often be left in
a state which is not compatible with the cabling being used and must be reconfigured. Please
ensure you only select one of the supported communication methods as documented in the
previous section.

In order to reboot a device, you may either disconnect it from power, or use the reboot key
sequence. The key sequence is either the yellow CLEAR button plus the "*.,#" key or the "-"
key, depending on which device is being used.

While booting, wait until the RBA splash screen appears with the scroll bars and system
information. Then quickly press the management password, which by default is 2 6 3 4 and
then the green ENTER key. Follow the on-screen prompts.

For UPP the code is the same, however you can simply enter it at the idle screen rather than
rebooting the device.

The communication method configuration is available via TDA -> Configuration ->
Communication.

11.1.1.4.1 RBA Contactless Support

Some devices such as the iPP320 have contactless as an optional module. It is possible when
such a device is shipped to you, the optional module is installed but not activated. If you are
certain the device has the necessary hardware for contactless, but contactless is not working,
you may need to activate it. For the iPP320 this can be confirmed by observing the existence
of a contactless chip behind the rear door of the device. Contactless must not be enabled if the
device does not have the proper hardware.

In order to enable contactless, use the key sequence documented in the prior section to
enter management mode. Then navigate to Telium manager -> Initialization ->
Parameters -> Contactless and make sure it is set to Yes -> Internal.

11.1.1.5 RBA Hardware Information

It is important to ensure the device being ordered is the latest hardware revision. Ingenico often
introduces newer revisions without changing the model number, however their Part Numbers
do in fact differ. The easiest way to request the most recent revision is to ensure you are
requesting the PCI PTS v3 or higher version of the devices. Older hardware revisions comply
with PCI PTS v2 and should not be used for new deployments as you may experience issues
due to limitations in the hardware.

Note: There have been recent reports of customers receiving iPP320 units that have been sent
out as PCI PTS v2 devices. These devices do NOT support RBA12 and higher, even though
they may come with a later RBA release. The part number on the supported devices will start
with 11, while the part number on unsupported devices will start with 01. If you experience
lockups or unexpected behavior, please verify your device is a PCI PTS v3 or higher device.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 89

11.1.1.6 Forms and Images

UniTerm depends on the stock forms and images that ship by default on terminals with RBA
and UPP. In addition, UniTerm does require a few UniTerm-specific forms and images to be
available on the device. These will be generated and uploaded automatically to the device if
UniTerm can not find them.

UniTerm will check if it has all the necessary forms on the first transaction run by a device. It
will then load any missing forms. When loading forms is required, a message is presented on
the device and there is an additional delay until the upload is complete.

It is possible for integrators to fully customize the look and feel of the forms displayed on
the device. Such integrators should contact Ingenico and sign up for the developer portal
available at https://developer.ingenico.us/ in order to obtain the necessary form building
tools. UniTerm provides the u_action=deviceupload function to assist integrators in
uploading any custom forms and images they have created directly from their POS. Device
distributors can also assist with pre-loading forms and images prior to shipping to end users if
more convenient. When uploading forms and images, the u_filename should only contain
the filename and does not need to reference the HOST path on the device.

The forms used and their requirements are listed below.

Forms and Images used by UniTerm:

• UTAD.K3Z - The form displayed when the device is idle, also known as the "ADs" screen.
This form may be customized to present an image or a series of rotating images, but must
not contain buttons. The default form loaded contains a single image, UTAD.PNG (or
UTAD.BMP on iUP250/iUC285 devices). It is recommended that the images created be
specific to the device for best appearance even though the device will scale the image if too
small or large.

• UTCCOD.K3Z - Form used for card entry / selection. The form loaded is the same as the
default Ingenico CCOD.K3Z form, with the exception that the cancelenabled='true'
attribute has been added to allow the cardholder to press the physical cancel button to exit
the request payment screen. Integrators wishing to modify this screen need to comply with
the capabilities of the stock form.

• UTCSEL.K3Z - Form used for tender selection (credit, debit, etc). The form loaded is
identical to the default Ingenico PAY1.K3Z form. It is duplicated due to an Ingenico
limitation that does not allow the use of the stock form when using the "on demand"
command mode. Integrators wishing to modify this form must comply with the capabilities
of the stock form, especially the mapping of the button names available (e.g. Bbtna - debit,
Bbtnb - credit, etc).

• MSG.K3Z - Form used to display single line messages. This is a stock form, any
replacements should adhere to the capabilities of the stock form.

• MSGTHICK.K3Z - Form used to display double line messages. This is a stock form, any
replacements should adhere to the capabilities of the stock form.

https://developer.ingenico.us/

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 90

• AMTV.K3Z - Form used to display confirmation prompts, both for arbitrary prompts
and amount confirmation. This is a stock form, any replacements should adhere to the
capabilities of the stock form.

• UTASEL.K3Z - Form used to display tip and Cash Back prompts, based on the cashba.K3Z
stock form. Button IDs must be:
• O - Other
• N - No (won't be shown on smaller devices)
• A - Amount 1
• B - Amount 2
• C - Amount 3

• Ingenico may internally call additional forms during the EMV payment processing flow. For
information on how to customize these screens, integrators should contact Ingenico.

11.1.1.7 First Data TransArmor RSA Encryption

The Ingenico devices support First Data's TransArmor RSA encryption. TransArmor is First
Data's P2PE encryption solution along with tokenization which must be enabled on the account
both within First Data's systems as well as within the Payment Server. When configuring
the Payment Server account for TransArmor encryption, set the Encryption merchant
configuration value to IngenicoRSA.

As part of the device loading procedure, a key request will be made to the Payment Server
which will request the current key to use from First Data's systems. The Payment Server will
then send that key identifier to takeys.monetra.com:443 to look for an available signed
package to load onto the Ingenico device. Due to limitations in the Ingenico TransArmor
implementation it is not possible to directly load the key from First Data's systems into the
device. If the requested key package is not yet available, the existing key will be continued to
be used until which time the updated package is made available.

TransArmor keys typically expire after 2 years, and new keys will be provided 90 days prior
to expiration. All terminals on a given merchant account will share the same RSA public key.

11.1.1.8 Updating RBA or UPP firmware with UniTerm

As of UniTerm v8.2, firmware updating is supported through UniTerm. As part of the RBA
and UPP integration kit provided by Ingenico, there are firmware files provided for multiple
upgrade options. The format supported by UniTerm is the OGZ format, which is a single-
file firmware update. Each device in the RBA and UPP family has its own firmware file. For
instance, an iSC 250 cannot use the same firmware file as an iPP320.

Upgrading should take place via USB<>Serial Conv mode if possible. USB-HID mode will
add significant time (20+ minutes) to the upgrade process. Ethernet mode is quick, but it is
known that if a device is configured with a static IP address, the firmware update may reset the
device to DHCP.

For convenience, validated firmware versions for OGZ upgrades have been made available
here: https://download.monetra.com/devices/ingenico.

https://download.monetra.com/devices/ingenico

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 91

Note: Upgrading the firmware can take several minutes and may wipe all custom settings
(including encryption), forms, and images. Only firmware upgrading is tested and supported,
downgrading is not recommended. It is also only recommended to update to firmware
versions which have been approved for use by UniTerm to ensure compatibility. Please
ensure power is not unplugged during an upgrade or the device could be required to be sent in
for repair.

Provided below is the recommended steps to perform in order to upgrade the RBA firmware via
UniTerm.

1. Request the current device model and RBA/UPP version via the u_action=deviceinfo
command. Ensure the current firmware version needs to be updated before continuing, take
note of any additional information returned such as the encryption type.

2. Locate the proper OGZ for the desired RBA/UPP version to load for the device model and
send it to UniTerm via the u_action=deviceupload command. The upgrade process
may take 5 minutes or more depending on the connectivity method used. The device will
reboot and apply the update and UniTerm should return once the update is complete.

3. Perform a u_action=deviceinfo request to ensure the firmware was successfully
updated to the desired version.

4. Perform a u_action=deviceload with the u_forceload=yes parameter to ensure
UniTerm re-downloads all EMV settings to the device. The device will reboot after this
process.

5. Upload any custom forms or images to the device using the u_action=deviceupload
command. These forms or images may be uploaded one at a time, or in bulk by packaging
them into a TGZ file.

6. Upload any security files such as encryption activation or BIN exclusion lists using the
u_action=deviceupload command.

If keys are loaded for Monetra/CardShield encryption, RBA includes a file known as
MONETRA.PGZ or MONXXYY.PGZ where the XXYY corresponds to the RBA version. This file
must be re-loaded in order to ensure the device outputs encrypted data otherwise all data
will be output unencrypted. The encryption type loaded prior to the upgrade is returned via
the deviceinfo request in the first step. It is important to ensure that the encryption file
used is the one for the specific RBA/UPP version in use or the device may refuse to boot or
otherwise behave in abnormal ways.

For UPP devices, the Generic Triple-DES (TDES) activation file should be used.

7. If any files were uploaded to the device after the deviceload, it is necessary to call
u_action=devicereboot before the device is ready to be used.

11.1.1.9 SSL Client (Device -> UniTerm) Mode of operation

A PGZ with the client certificate needs to be loaded onto the device. Ingenico refers to the
device as the server no matter how it's configured. So care must be taken with the files to

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 92

ensure they're not mixed up between the device (client) and server (UniTerm). RBA/UPP
must have a certificate signed by the same CA as the server. RBA/UPP does not do hostname
validation and uses the CA loaded on the device for verification of the server. It is up to the
integrator to generate a certificate for the device to use and the CA for verification and share
this with Ingenico who will generate the PGZ file for the device.

If using self signed certificates, generate a CA certificate and private key. Generate a private
key and certificate signing request for both the client and server. Sign each request with the
CA to generate a certificate. Send the client certificate, client private key, and CA certificate to
Ingenico. They will package these three files into a PGZ that will be loaded onto the device.

To enable SSL mode via the device menus, set:

• TDA -> Configuration -> Communication -> Select Comm. Type ->

Ethernet

• TDA -> Configuration -> Communication -> Ethernet Settings ->

Connection Method -> Client

• TDA -> Configuration -> Communication -> Ethernet Settings -> DHCP -
Set Auto if using DHCP, or Static if not

• If using Static: TDA -> Configuration -> Communication -> Ethernet
Settings -> IP Address - Enter IP address to use

• TDA -> Configuration -> Communication -> Ethernet Settings -> Host

IP Address - Enter IP address of UniTerm server
• TDA -> Configuration -> Communication -> Ethernet Settings -> Host

IP Port - Enter Port number UniTerm is configured to listen on
• TDA -> Configuration -> Communication -> Ethernet Settings -> SSL -

> Yes

11.1.2 Ingenico TCPX information

Ingenico TCPX replaces CPX/uCPX firmware and is designed to power both attended and
unattended Ingenico terminals in Canada and includes support for Interac debit cards.

The recommended firmware version is 20.26A with kernel 5.38.

11.1.2.1 Communication Methods

UniTerm supports communicating with TCPX via these communication methods (given the
proper cables and add-on options from Ingenico):

• USB->Serial - Requires Telium or Jungo drivers on Windows, will show up as a virtual
COM port.

• Serial - 9600 7bits Even Parity - No flow control

• IP/Ethernet - Even Parity

11.1.3 BBPos family information

These BBPos devices are supported on all platforms and are optimized for Mobile payments.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 93

11.1.3.1 Chipper 2X BT/Anywhere Commerce Walker C2X BT

The BBPos Chipper 2X BT device does not have a pinpad or display. The minimum firmware
version supported is 1.00.03.32 with configuration MQZZ_mssw_v12.

11.1.3.1.1 Communication Methods

UniTerm supports communicating via these communication methods:

• USB HID - Linux/MacOS/Windows/Android
• Bluetooth Classic - Android/MacOS
• Bluetooth LE - iOS/MacOS

11.1.3.2 WisePad 3S

The WisePad 3S is currently in the initial stages of release by BBPos and still has some
issues supporting Quick Chip transactions. It has a pinpad and display, but the pinpad is
currently not supported. The only firmware version supported is 4.01.00.08 with configuration
MQZZ_mssw_v2.

11.1.3.2.1 Communication Methods

UniTerm supports communicating via these communication methods:

• Bluetooth Classic - Android/MacOS
• Bluetooth LE - iOS/MacOS

11.1.4 ID Tech Augusta and Spectrum Pro (NGA)

The Augusta device is an MSR + EMV Contact reader connected via USB HID meant to
replace the classic MSR-only card readers found on classic POS systems.

The Spectrum Pro device is an MSR Insert + EMV Contact reader connected via USB HID
meant for stand-alone kiosks. An optional Pin Pad may be attached to offer a display and PIN
entry.

11.1.5 ID Tech VP5300 information

The VP5300 is an unattended device capable of EMV contact, EMV contactless, and MSR
swipe transactions. The reader is dual-interface, meaning that it can capture swipe data as
the card is removed from the terminal following a chip insert. The production devices are
equipped with tamper-detection security measures and hold an IP65 rating for outdoor use.

11.1.5.1 Communication Methods

UniTerm supports communicating with the VP5300 via these communication methods:

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 94

• USB HID - Linux/Windows
• Serial - Settings: 115200 8N1 - No flow control

11.1.5.2 Updating the Device

Currently, device upgrades for the VP5300 must go through ID Tech's software. Contact your
ID Tech support representative for information on obtaining the software and performing
the upgrade. The latest recommended update package is always available at https://
www.transafe.com/devices (this applies to both TranSafe and Monetra customers).

11.1.5.3 Remote Key Injection

To perform a Remote Key Injection (RKI) on a VP5300, you must contact your ID Tech sales
representative and purchase the ability through them. They will provide all further instructions
for the process. Before contacting them, it can be helpful to gather the serial numbers for
all devices you want injected. This can be done by issuing u_action=deviceinfo and
checking the serialnum response parameter. The keys currently on the device will be listed
in the response parameters starting with ksn_.

11.1.6 Equinox Luxe information

UniTerm supports the Linux-based Luxe family of Equinox devices, which currently includes
two models: 6200m and 8500i.

The 6200m is a handheld device capable of EMV contact, EMV contactless, and MSR swipe
transactions. It can be configured with multiple modules, allowing for wired power, battery
power, receipt printing, wireless connectivity, etc. The small touch screen can display custom
logos and take signatures, and it allows for input selection.

The 8500i is a countertop device capable of EMV contact, EMV contactless, and MSR swipe
transactions. Like the smaller 6200m, the 8500i has a keypad and a full-featured touch screen.

11.1.6.1 Communication Methods

UniTerm supports communicating with Luxe devices via these communication methods:

• Ethernet - Either IP or SSL/TLS connectivity

Note: By default, the device uses Port 80 for IP connections and Port 443 for SSL/TLS
connections.

11.1.6.2 Ordering Devices

Equinox devices are designated as either development or production devices. Production
devices can be injected with only production keys, and they have additional restrictions
in place that enhance the security of the device. Development devices do not have these
restrictions. Because of the additional security measures, it is recommended that you use only

https://www.transafe.com/devices
https://www.transafe.com/devices

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 95

production devices in a production setting. (You can see which device you have by issuing
u_action=deviceinfo and checking the device_mode response parameter.)

To interact with UniTerm properly, the Luxe device must be preloaded with one of these
packages:

BOM # Description

NNN P2PE Enabled (Need to specify KSID)

NNN No P2PE

11.1.6.2.1 Key Slots

PIN and P2PE keys must be injected into the appropriate key slots to work correctly. These are
the designated slots:

Key Slot Key Type

1 PIN Key

4 P2PE Key

11.1.6.3 Point-to-Point Encryption (P2PE)

There are two steps for enabling P2PE on a Luxe device that did not come pre-enabled for
P2PE. You only need to perform these steps if your device was not previously enabled for
P2PE. If you ordered the device with the P2PE load, then you do not need to do this.

1. Inject a data-encrypting key into Key Slot 4. See Section 11.1.6.7 for more information on
this.

2. Load a new whitelist onto the device to send all sensitive data through the encryption
engine. The whitelist is available here: https://www.transafe.com/devices#02-Equinox-01-
Luxe. You can load the tarball directly onto the device using u_action=deviceupload.
If you want the whitelist to selectively encrypt card data, then you will need to work with
Equinox directly to receive a custom whitelist file.

Note: The key must be injected into Key Slot 4. P2PE will not work if the key is in any other
slot.

11.1.6.4 Device Configuration

To enter the device's configuration menu, press and hold the button with the 3 lines for a few
seconds until you hear a low beep, then press the button again twice. You can then enter the
Setup menu.

11.1.6.4.1 Wired Communication

For wired connectivity, the device should automatically receive an IP address after being
plugged in and powered on. To determine the assigned IP address, enter the Setup menu, then
navigate to System Utils -> Information. The address should be listed with the eth0 interface.

https://www.transafe.com/devices#02-Equinox-01-Luxe
https://www.transafe.com/devices#02-Equinox-01-Luxe

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 96

11.1.6.4.2 Wireless Communication

To connect a wireless-capable device to a wireless network, enter the Setup menu, then
navigate to System Config -> Network. Enable HTTPS, then select WiFi. Choose the desired
SSID, enter the network's password using the on-screen keyboard, and choose how the IP
address will be assigned. If that's successful, you can see the new address using the instructions
above.

11.1.6.5 Custom Idle Images

By default, the device displays an Equinox logo when not in use. If no custom logo is
specified, then the first device load will replace the stock logo with a Monetra logo. To upload
a custom idle image, you would use u_action=deviceupload. The image data needs to
be base64-encoded and sent in the u_b64data parameter, and u_filename needs to be sent
with a value of Welcome.png.

Model Screen ratio Maximum image resolution

6200m 4:3 320x240

8500i 16:9 800x480

11.1.6.6 Updating Packages

Instead of using a unified, monolithic firmware, Luxe devices are loaded with a number
of modular applications that each handle a distinct area of functionality. For example, the
payment application handles payment processing on the device. To see the applications
currently installed, you can issue u_action=deviceinfo and check the apps_installed
response parameter. Any missing applications will appear in the apps_missing response
parameter.

Equinox periodically releases update packages for the various applications on the Luxe
devices. As the applications are separate modules, so are the update packages; each package
updates a different application. To make the update process easier, we roll the updates together
into one package. The latest package is always available at https://www.transafe.com/devices
(this applies to both TranSafe and Monetra customers). Follow these steps to update the
device:

1. Download the latest update from https://www.transafe.com/devices. The file should be an
uncompressed tarball ending in .tar.

2. Upload the tarball to the device using the u_action=deviceupload command. The
update package needs to be base64-encoded and sent in the u_b64data parameter, and
u_filename should reflect the same *.tar filename as downloaded.

If you decide to update applications manually without using our unified package, please take
note of these things:

• The 6200m uses the Stock62 application, while the 8500i uses the Stock application.

https://www.transafe.com/devices
https://www.transafe.com/devices

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 97

• There are different package updates for production and development devices. You
can see which device you have by issuing u_action=deviceinfo and checking the
device_mode response parameter.

• You must update all packages from a feature release in tandem. That is, you can't update
an application from one feature release and use a different feature release to update another
application. All application updates must come from the same feature release. The only
exceptions to this are the Stock/Stock62 and Pinpad apps, which don't have any version
requirements.

11.1.6.7 Remote Key Injection

Equinox is able to perform Remote Key Injections on all supported terminals. Contact the KIF
where you purchased the device for more information.

11.2 Obtaining Devices

Obtaining the right device for use with UniTerm requires care to ensure a few major factors:

• Is the device supported by UniTerm?
• Please see the prior section: Section 11.1

• Is the device certified for the Processing Institution being used?
• Please see the next chapter: Section 12.1

• Does the device come preloaded with both the right software and version?
• Please see section specific to the chosen device under Section 11.1 for supported software

revisions running on the device.
• Is the vendor the device is sourced from able to load the appropriate keys (Pin Debit or

Encryption) as required?
• Please see the next section: Section 11.2.1

11.2.1 Where to source devices with appropriate loads and keys

Most providers of POS hardware also offer loading and injection services. It is recommended
that you work with one or more providers that can offer these services to ensure smooth
deployments and reduced shipping costs. When a device is ordered, other than the device
model being ordered, you must also indicate the software load and version to be installed on
the device. Most device manufacturers have multiple software loads available so it is essential
that you adhere to any documented software requirements to ensure compatibility.

In addition to the software loads on the device, most devices will require a Pin Debit key be
loaded into the device. In the US market this is a 3DES DUKPT key used for encrypting pins.
Though commonly referred to as a Pin Debit key, it is also required for EMV Credit Card
Online PIN verification which uses the same infrastructure for verification of PINs. If EMV
is being used, and the certification states Online PIN is used, you MUST have a PIN Debit
key injected into your device. Unfortunately there are dozens of potential keys, and the correct
one for the processing institution and acquirer being used must be injected into the device.
You should contact your merchant account provider or acquiring bank to get the Key Serial
ID needed for injecting into your device and work with your hardware provider to ensure they

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 98

have that key available. Only secure key injection facilities can load PIN keys into a device, it
is not possible for a merchant to load their own PIN keys.

Note: A single processing institution may process transactions for more than one acquiring
bank, and each acquiring bank may mandate their own PIN keys. It is absolutely necessary
to not simply rely on obtaining a PIN key that works with your processing institution, but
also one that works for the specific acquiring bank. Only your merchant account provider can
assist you with identifying who your acquiring bank is and what PIN key identifier should be
used.

If Point to Point Encryption is also desired, it is necessary to have your key injection facility
also load that key into your device and enable the appropriate encryption support in the
software to utilize the key before shipping the device. One notable exception is First Data's
RSA TransArmor on Ingenico RBA devices does not need to be loaded as UniTerm can
load the appropriate keys itself. If using CardShield encryption, it is necessary to have first
shared a Base Derivation Key with your key injection facility from your instance of the
Payment Server, in order for them to be able to load the key into your device and enable the
support before shipping. If using TranSafe a list of key injection facilities along with the key
identifiers is provided at https://www.transafe.com/.

Some device distributors that provide loading and key injection facilities are listed below in
alphabetical order:

• JRs POS Depot
• The Phoenix Group
• POS Data
• POS Portal
• Scan Source
• TASQ

https://www.transafe.com/

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 99

12 Certifications and Device Configurations

12.1. Certification List .. 99
12.2. Configuration Definitions ... 104

12.1 Certification List

EMV Certifications are tied to specific device versions, device configurations, and software
versions. During deployment, it is crucial that only certified configurations are used.

Device configurations are based on the EMV kernel version in the device. The available
configurations are listed as part of the EMV LOA (Letter of Approval) for the Level 2 kernel
for the device. The approval letters can be obtained from EMVCo: http://www.emvco.com/
approvals.aspx?id=85

Device EMVKern/Conf UniTerm Module Version Config

Chase Paymentech

Ingenico RBA

family

4.67/1C 8.0+ Paymentech

Tampa 3.2.0

(Done Feb

2016)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Ingenico RBA

family

5.26/1C 8.4+ Paymentech

Tampa 3.2.1

(Done Apr

2018)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Elavon

Ingenico RBA

family

5.26/1C 8.4+ Elavon

Encompass

3.1.0

(Jan 2018)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

First Data

Ingenico

UPP (Tetra)

family

8.38/1C 9.1+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2018)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

http://www.emvco.com/approvals.aspx?id=85
http://www.emvco.com/approvals.aspx?id=85

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 100

Device EMVKern/Conf UniTerm Module Version Config

BBPos Chipper

2X BT

1.1/4C 9.1+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2018)

USA, Attended,

NoCVM

Only, EMV

Contactless

ID Tech

Augusta

1.10.037/5C 9.1+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2018)

USA, Attended,

Sig

ID Tech

Augusta +

Spectrum Pro

1.10.037/4C 9.1+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2018)

USA,

Unattended,

NoCVM Only

ID Tech

Augusta +

Spectrum Pro

w/PinPad

1.10.037/3C 9.1+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2018)

USA,

Unattended,

OnlinePin,

OfflinePin,

EMV Debit

Ingenico RBA

(Telium2)

family

5.26/1C 8.4+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2017)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

(Telium2)

family

5.26/10C 8.4+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Dec

2017)

USA, Attended,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

(Telium2)

family

5.26/11C 8.4+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Jan

2018)

USA,

Unattended,

OnlinePin,

OfflinePin,

EMV Debit, EMV

Contactless,

PIN ByPass

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 101

Device EMVKern/Conf UniTerm Module Version Config

Ingenico RBA

(Telium2)

family

5.26/3C 8.4+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Jan

2018)

USA,

Unattended,

NoCVM only,

EMV Debit, EMV

Contactless

Ingenico RBA

(Telium2)

family

4.67/1C 8.3+ First Data

Cardnet or

Nashville EDC

4.1.1

(Done Feb

2017)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless

Ingenico RBA

(Telium2)

family

4.67/1C 8.0+ First Data

Cardnet or

Nashville EDC

4.1.0

(Done Jan

2016)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

ID Tech NEO

Gen 2 family

1.20.038/4C 9.11+ First Data

Cardnet or

Nashville EDC

4.2.0

(Done Sep

2020)

USA,

Unattended,

NoCVM

only, EMV

Contactless

Equinox Luxe

family

1.0.09/1C 9.11+ First Data

Cardnet or

Nashville EDC

4.2.0

(Done Sep

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico

UPP (Tetra)

family

8.38/3C 9.9+ First Data

Omnipay 1.0.0

(Done Dec

2020)

Europe,

Attended,

OfflinePin,

Sig, EMV, EMV

Contactless,

PIN ByPass

Global Payments

Ingenico RBA

family

4.67/1C 8.0+ Global

Payments East

3.0.0

(Done Nov

2015)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 102

Device EMVKern/Conf UniTerm Module Version Config

Ingenico UPP

family

9.01/1C 9.9+ Global

Payments East

4.0.0

(Done Dec

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Heartland Payment Systems

Ingenico RBA

family

5.26/1C 9.0+ Heartland

Payment

Systems 2.1.0

(Done Jan

2019)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

BBPos Chipper

2X BT

1.1/4C 9.7+ Heartland

Payment

Systems 2.1.0

(Done Oct

2019)

USA, Attended,

NoCVM

Only, EMV

Contactless

ID Tech

Augusta

1.10.037/5C 9.7+ Heartland

Payment

Systems 2.1.0

(Done Dec

2019)

USA, Attended,

Sig

Ingenico UPP

family

9.01/1C 9.9+ Heartland

Payment

Systems 2.1.0

(Done Dec

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Moneris

Ingenico

iUP250 TCPX

5.38/5C 9.4+ Moneris SPDH

2.1.0

(Done June

2019)

Canada,

Unattended,

OfflinePin,

EMV Debit, EMV

Contactless

NCR Payment Systems (fka JetPay)

Ingenico RBA

family

5.38/1C 9.7+ NCR Payment

Systems 1.0.0

(Done Dec

2019)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 103

Device EMVKern/Conf UniTerm Module Version Config
Contactless,

PIN ByPass

Ingenico UPP

family

9.01/1C 9.9+ NCR Payment

Systems 1.1.0

(Done Dec

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Tsys

Ingenico

UPP (Tetra)

family

9.01/1C 9.9+ TSYS (aka

Vital/VisaNet)

4.1.0

(Done June

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

family

5.26/1C 9.4+ TSYS (aka

Vital/VisaNet)

4.1.0

(Done June

2019)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

family

4.67/1C 8.0+ TSYS (aka

Vital/VisaNet)

3.0.0

(Done Feb

2016)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

ID Tech

Augusta

1.10.037/5C 9.7+ TSYS (aka

Vital/VisaNet)

4.2.1

(Done Dec

2019)

USA, Attended,

Sig

BBPos family 1.2/3C 9.12.1+ TSYS (aka

Vital/VisaNet)

4.2.3

(Done Dec

2020)

USA, Attended,

Sig, EMV

Contactless

Vantiv (now WorldPay)

Ingenico RBA

family

5.26/1C 8.4+ Vantiv/

FifthThird 610

3.0.0

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 104

Device EMVKern/Conf UniTerm Module Version Config
(Done August

2017)

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

family

4.67/1C 8.0+ Vantiv/

FifthThird 610

2.1.0

(Done Jan

2016)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

Ingenico UPP

family

9.01/1C 9.9+ Vantiv/

FifthThird 610

3.0.0

(Done April

2020)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

WorldPay (TCMP)

Ingenico RBA

family

5.26/1C 8.4+ RBS WorldPay

TCMP 2.1.0

(Done August

2017)

USA, Attended,

OnlinePin,

OfflinePin,

Sig, EMV

Debit, EMV

Contactless,

PIN ByPass

Ingenico RBA

family

4.67/1C 8.0+ RBS WorldPay

TCMP 2.0.0

(Done Feb

2016)

USA, Attended,

OnlinePin,

OfflinePin,

Sig

12.2 Configuration Definitions

EMV configurations are strictly certified in an "all or nothing" manner. You must choose an
explicit certification from the list in the prior section and all configuration parameters must
be adhered to. For instance, if the certification lists both OnlinePin and OfflinePin, you
cannot simply choose to support only OfflinePin.

The meanings of the various configurations listed in the prior section are below:

Key Description

USA Certified for use in the United States

Canada Certified for use in Canada

Attended The environment is monitored by a clerk such as Retail, Restaurant, or
Lodging. Not usable in a Kiosk environment such as a parking meter or gas
pump.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 105

Key Description

Unattended The environment is NOT monitored by a clerk, for use in kiosk type
environments.

OnlinePin An encrypted PIN can be obtained from a cardholder and sent to the processor
with the transaction. When supporting Online PIN it is required that the device
be injected with a 3DES DUKPT PIN key specific to the processing institution
in use prior to deployment by a merchant.

Note: OnlinePin may not be supported for all card brands of a
given processing institution. UniTerm will automatically adjust
support for the processor's card brand limitations where necessary.

OfflinePin The terminal will negotiate the PIN directly with the chip embedded into the
card without the need to send the PIN to the processing institution. A terminal
does not need a Pin Debit key injected into it if only OfflinePin (and not
OnlinePin) is supported.

Sig Signature cardholder verification is supported. This may either be a signature
capture capable device or a signature obtained via paper receipt.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 106

13 UniTerm supported peripherals

Peripherals supported by UniTerm are devices that aren't specific to the payment flow, but help
facilitate the operations of a Point of Sale environment. Examples may be printers, barcode
readers, and cash drawers. Currently UniTerm only supports Cash Drawers which are triggered
via the 12V/24V DC RJ12 port on receipt printers, some times labeled as "DK" (Drawer Kick).

Supported peripherals and capabilities are listed below:

Manufacturer Model u_devicetype Connectivity Capabilities

Printers

Epson TM-m10 epson_esc IP, Bluetooth,
MFi

Print,
CashDrawer

Epson TM-T20II epson_esc IP Print,
CashDrawer

Epson TM-T70II epson_esc IP Print,
CashDrawer

Star Micronics mPOP star_line Bluetooth, MFi Print,
CashDrawer,
BarCodeRead

Star Micronics SM-S230i
(Mobile)

star_line Bluetooth, MFi Print

Star Micronics SM-T300i
(Mobile)

star_line Bluetooth, MFi Print

Star Micronics SP700 (Impact) star_line IP Print,
CashDrawer

Star Micronics TSP650II star_line IP, Bluetooth,
MFi

Print,
CashDrawer

Seiko MP-B20
(Mobile)

seiko Bluetooth, MFi Print

Seiko MP-B30
(Mobile)

seiko Bluetooth, MFi Print

Seiko RP-F10 seiko IP, Bluetooth,
MFi

Print,
CashDrawer

Barcode Readers

Inateck BCST-50 inateck HID, Bluetooth,
BLE

BarCodeRead

Inateck BCST-70 inateck HID, Bluetooth BarCodeRead

Honeywell Voyager 1452g generic_barcode HID BarCodeRead

Honeywell Voyager XP
1472g

generic_barcode HID BarCodeRead

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 107

A UniTerm Device Loading

When loading a device with UniTerm, UniTerm will send Monetra a list of terminal
configurations from the Letter of Approval (LOA) as provided by device manufacturer for the
device's EMV kernel. Monetra will compare this list to merchant defined settings. Monetra
will then select a usable LOA configuration and return to UniTerm loading data which has
been merged with the merchant's settings.

Some terminal loading data is mandatory and cannot deviate from a LOA configuration. Other
data is merchant configurable and is allowed to be changed. Data that is configurable will be
merged into an LOA configuration by Monetra based on the merchant's settings.

In the event no LOA configuration is valid for the merchant's settings then Monetra will
respond with an error. Also, If the device's EMV kernel version is not certified for use with
UniTerm loading will result in an error.

After a successful load the integration must check altered_termload. If it is "yes" then not
all of the merchant's settings could be used and some of the values have been ignored. The
integration can compare the selected values with the *_desired and *_loa values to determine
what was ignored. It is the choice of the integration to either accept the load with the selected
values or return an error if the merchant's setting have been altered due to being unsupported
by the devices LOA configurations.

Note: If using implicit/auto device loading and not calling u_action=deviceload directly,
an integrator will have no ability to retrieve the deviceload parameters.

PARAMETER OVERVIEW

altered_termload If no LOA configuration matches the merchant's settings a
valid LOA will be used and the merchant's settings will be
overridden. This indicates this has happened.

termtype_desired The terminal type Monetra has determined fits the merchant's
settings.

termcaps_desired Terminal capabilities configured in Monetra. These are
features that the merchant has selected for use.

addltermcaps_desired Additional terminal capabilities configured in Monetra. These
are features that the merchant has selected for use.

termcaps_loa Terminal capabilities from the LOA configuration Monetra
has selected.

addltermcaps_loa Additional terminal capabilities from the LOA configuration
Monetra has selected.

loa_id The LOA configuration id Monetra has selected for use. This
is the id in the device certification document for the kernel
version located at:
http://www.emvco.com/approvals.aspx?id=85

termtype The terminal type from the LOA configuration that will be
loaded into the device.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 108

termcaps Terminal capabilities from the merged LOA configuration and
merchant's settings that will be loaded into the device. Note:
mandatory LOA configuration data will not be changed.

addltermcaps Additional terminal capabilities from the merged LOA
configuration and merchant's settings that will be loaded into
the device. Note: mandatory LOA configuration data will not
be changed.

Example device load response:

u_errorcode = SUCCESS
code = AUTH
verbiage = Device loaded
altered_termload = no
termtype_desired = 21
termcaps_desired = E0B8C8
addltermcaps_desired = 6000F0F001
termcaps_loa = 60B8C8
addltermcaps_loa = 6000F0A001
loa_id = 18C
termtype = 22
termcaps = E0B8C8
addltermcaps = 6000F0F001

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 109

B HMAC Algorithm

Keyed-Hashing for Message Authentication as described by RFC-2104

HMAC provides a way to check the integrity of information transmitted over or stored
in an unreliable medium, and is a prime necessity in the world of open computing and
communications. Mechanisms that provide such an integrity check based on a secret key are
usually called "message authentication codes" (MAC). Typically, message authentication
codes are used between two parties that share a secret key in order to validate information
transmitted between these parties.

Equation B.1. HMAC Mathmatical Definition

HMAC (K,m) = H ((K ⊕ opad) # H ((K ⊕ ipad) # m))

Where:

• H is a cryptographic hash function (SHA256 in UniTerm)

• K is a secret key padded to the right with extra zeros to the input block size of the hash
function, or the hash of the original key if it's longer than that block size

• m is the message to be authenticated

• # denotes concatenation

• ⊕ denotes Exclusive OR (XOR)

• opad is the outer padding (0x5c5c5c...5c5c, one-block-long hexadecimal constant)

• ipad is the inner padding (0x363636...3636, one-block-long hexadecimal constant)

For more information please see RFC 2104: http://www.ietf.org/rfc/rfc2104.txt

Also, Wikipedia has a nice overview here: http://en.wikipedia.org/wiki/Hash-
based_message_authentication_code

http://www.ietf.org/rfc/rfc2104.txt
http://en.wikipedia.org/wiki/Hash-based_message_authentication_code
http://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 110

C Pre-formatted Receipt Processing

Pre-formatted receipt processing has been added to simplify generation of compliant receipts
with the rules dictated by the card brands. Data is output in a series of sections so that
merchants may insert their own custom data in-between sections of brand-required data as they
see fit.

Note: IMPORTANT: With pre-formatted receipts, it is mandatory by the card brands to insert
the charge description or line items into the receipt body in the appropriate section, typically
after the u_rcpt_*cust_type pre-formatted block. It is also required by the card brands
that receipts contain a Return, Refund, and Cancellation policy. It is the responsibility of the
integrator to output this information on the receipt.

C.1 Request parameters

The u_rcpt key/value pair is sent in the request to UniTerm to indicate whether or not to
output a series of pre-formatted receipt blocks. This can also specifying format requirements.
If set to yes it will simply use the receipt formatting configuration from the uniterm.ini.

Receipt data can be returned on these u_action's:

• txnrequest

• txnfinish

• tab - when u_tab=close
• standin - when u_standin=getresp
• passthrough

• passthroughmac

When passing formatting configuration to u_rcpt, it will take the key/value pairs from the
table below and encode them in a set of semi-colon separated key/value pairs such as:

u_rcpt=type=plain;line_len=24;use_merch_lang=no;line_break="\n"

or

type=plain|html

Receipt configuration options:

key value

type Possible values:

• plain - Plain Text (default)
• html - HTML. Needs style sheet applied.
• xml - XML. Suitable for XSLT transformations. Typically used

to generate complex HTML when CSS alone is not capable of
providing the desired formatting.

• json - JSON. Typically used for easy manipulation with
Javascript.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 111

Values can be specified pipe-delimited (|) if more than one receipt
output format is desired. When specifying more than one type, the
response keys will indicate the format in the key name, but if only one
type is specified, the type is omitted.

line_len Only relevant for type=plain. Number of characters per line.
Default is 40.

line_break Only relevant for type=plain. Character sequence for use for
newlines. Default is \r\n

use_merch_lang True/False. Use the merchant's selected language rather than the
cardholder's language for the receipt. Default is True.

C.2 Supported Languages

Currently Supported Languages:

• en: English
• fr: French
• es: Spanish
• de: German
• it: Italian

C.3 Response Data

The below data elements are ordered in the recommended order for each receipt type (with the
exception for Moneris (SPDH), please see note below). Failure to use the provided order may
result in a non-compliant receipt format. Some response fields may not be sent back on some
transaction or response types.

Note: When using multiple types the response will have u_rcpt blocks denoting the type
after u_rcpt. E.g. u_rcpt_html_, u_rcpt_plain_. If only one type is specified the type
will not be included in the u_rcpt key name, the position of the receipt type is denoted by *
in the key names if used.

Customer receipt blocks:

key value

u_rcpt_*cust_merch_info Merchant information on file such as name, address, and
phone number.

u_rcpt_*cust_type Transaction Type information. Most of the time it is
emitted with a different section, except for Moneris receipt
formatting.

u_rcpt_*cust_reference Information about the transaction such as order number,
authorization number, time/date and other identifying
information.

u_rcpt_*cust_money Transaction amount, balance, and other monetary
information.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 112

u_rcpt_*cust_disposition Outcome of the transaction. Includes authorization
mode, PIN validation, and other information about the
transaction status.

u_rcpt_*cust_emv Brand-required EMV data and tags.

u_rcpt_*cust_notice Notice about receipt retention and indicate it is a customer
copy.

Note: Moneris (SPDH) customer receipts require blocks to be output in the below order:

• u_rcpt_*cust_merch_info

• u_rcpt_*cust_type

• u_rcpt_*cust_money

• u_rcpt_*cust_reference

• u_rcpt_*cust_disposition

• u_rcpt_*cust_notice

Merchant receipt blocks:

key value

u_rcpt_*merch_merch_info Merchant information on file such as name, address, and
phone number.

u_rcpt_*merch_type Transaction Type information. Most of the time it is
emitted with a different section, except for Moneris receipt
formatting.

u_rcpt_*merch_reference Information about the transaction such as order number,
authorization number, time/date and other identifying
information.

u_rcpt_*merch_money Transaction amount, balance, and other monetary
information.

u_rcpt_*merch_disposition Outcome of the transaction. Includes authorization
mode, PIN validation, and other information about the
transaction status.

u_rcpt_*merch_signature Will be present when a signature is necessary, or has been
electronically captured.

u_rcpt_*merch_emv Brand-required EMV data and tags.

u_rcpt_*merch_notice Notice about receipt retention and indicate it is a merchant
copy.

Note: Moneris (SPDH) merchant receipts require blocks to be output in the below order:

• u_rcpt_*merch_merch_info

• u_rcpt_*merch_type

• u_rcpt_*merch_money

• u_rcpt_*merch_reference

• u_rcpt_*merch_disposition

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 113

• u_rcpt_*merch_notice

C.3.1 Plain Text format

The sections returned as per the prior section are intended to simply be concatenated together
in the order documented to generate a fully compliant receipt. No additional processing is
necessary.

C.3.2 HTML format

UniTerm is capable of returning transaction receipt data as HTML. It will return the set
of receipt-specific key-value pairs as documented in the prior section with the transaction
response, where the values are HTML blocks containing a section of receipt content, and the
keys indicate which section is contained in the value.

Each HTML block is wrapped in a div container element with a class of rcpt_block
and an id indicating the block's purpose. Standalone data values in the block are wrapped
in div elements with the class rcpt_value and an id indicating what the data is (e.g.
"merch_name", "merch_phone", "action", etc). Labeled data values in the block are
grouped together in div elements with the class rcpt_group; the label is contained in a
div with the class rcpt_group_label and the value is contained in a div with the class
rcpt_group_val.

All classes and ids used are documented in the following sections.

C.3.2.1 Classes

Class Purpose

rcpt_block Container for a block of receipt data

rcpt_val An unlabeled item of receipt data. Direct descendant of rcpt_block

rcpt_group Container for labeled receipt data. Direct descendant of rcpt_block

rcpt_group_label A label for an item of receipt data. Direct descendant of rcpt_group

rcpt_group_val A labeled item of receipt data. Direct descendant of rcpt_group

C.3.2.2 IDs

ID Purpose

rcpt_merch_info Block containing merchant information

merch_name Merchant's name

merch_addr1 Merchant's street address

merch_addr2 Merchant's unit/suite number

merch_addr3 Merchant's city, state, and zip code

merch_phone Merchant's phone number

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 114

merch_email Merchant's email address

merch_url Merchant's website URL

rcpt_reference Block containing transaction reference information

action The 'action' value for the transaction (sale, return, etc.)

merch_id_group Container for merch_id_label and merch_id

merch_id_label Label for merchant ID

merch_id Merchant ID

laneid_group Container for laneid_label and laneid

laneid_label Label for lane ID

laneid Lane ID

cardtype The type of card used in the transaction (VISA, MC, etc.)

entry_mode The transaction's entry mode

acct_type_group Container for acct_type_label and acct_type

acct_type_label Label for account type

acct_type Account type

account_group Container for account_label and account

account_label Label for account number

account Account number used in the transaction

time_group Container for time_label and time

time_label Label for transaction date/time

time Date/time at which the transaction took place

ordernum_group Container for ordernum_label and ordernum

ordernum_label Label for order number

ordernum Order number

custref_group Container for custref_label and custref

custref_label Label for customer reference number

custref Customer reference number

ttid_group Container for ttid_label and ttid

ttid_label Label for TTID

ttid TTID

resp_code_group Container for resp_code_label and resp_code

resp_code_label Label for response code

resp_code Response code

auth_group Container for auth_label and auth

auth_label Label for authorization number

auth Authorization number

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 115

batch_group Container for batch_label and batch

batch_label Label for batch number

batch Batch number

stan_group Container for stan_label and stan

stan_label Label for STAN

stan STAN (system trace audit number)

rcpt_money Block containing monetary amounts from transaction

amount_group Container for amount_label and amount

amount_label Label for transaction amount

amount Transaction amount

tip_group Container for tip_label and tip

tip_label Label for tip amount

tip Tip amount

tax_group Container for tax_label and tax

tax_label Label for tax amount

tax Tax amount

cashbackamount_groupContainer for cashbackamount_label and cashbackamount

cashbackamount_labelLabel for cash back amount

cashbackamount Cash back amount

authamount_group Container for authamount_label and authamount

authamount_label Label for auth amount

authamount Auth amount

totalamount_group Container for totalamount_label and totalamount

totalamount_label Label for total amount for transaction

totalamount Total amount for transaction

balance_group Container for balance_label and balance

balance_label Label for customer balance amount

balance Customer balance amount

card_status Card status

pin_status PIN status

auth_result Transaction result (e.g. "Approved", "Declined")

auth_mode_group Container for auth_mode_label and auth_mode

auth_mode_label Label for authorization mode

auth_mode Authorization mode

printdata Print data

rcpt_signature Block containing signature information

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 116

line Signature line

agreement Signature agreement

sigcaptured Transaction signature capture status

rcpt_emv Block containing EMV data

name_group Container for name_label and name

name_label Label for EMV name

name EMV name

aid_group Container for aid_label and aid

aid_label Label for EMV AID

aid EMV AID

tvr_group Container for tvr_label and tvr

tvr_label Label for EMV TVR

tvr EMV TVR

tsi_group Container for tsi_label and tsi

tsi_label Label for EMV TSI

tsi EMV TSI

actype_group Container for actype_label and actype

actype_label Label for EMV AC type

actype EMV AC type

ac_group Container for ac_label and ac

ac_label Label for EMV Application Cryptogram

ac EMV Application Cryptogram

rcpt_notice Block containing notices for the customer

message Notice message

copy Whether receipt is a merchant copy or customer copy

C.3.2.3 Simple CSS styling example

 1 .rcpt_block {
 2 font-family: monospace;
 3 width: 15rem;
 4 display: grid;
 5 grid-template-columns: 1fr 1fr;
 6 grid-template-rows: auto;
 7 margin-bottom: 1rem;
 8 }
 9 .rcpt_val, .rcpt_group {
 10 grid-column: 1/3;
 11 margin-bottom: .5rem;
 12 }
 13 .rcpt_val {
 14 text-align: center;

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 117

 15 display: block;
 16 }
 17 .rcpt_group {
 18 grid-column: 1/3;
 19 display: flex;
 20 justify-content: space-between;
 21 }
 22 .rcpt_group_label:after {
 23 content: ":";
 24 }
 25 #action, #auth_result, .rcpt_group_label {
 26 text-transform: uppercase;
 27 }
 28 #cardtype, #entry_mode, #auth_group, #batch_group {
 29 grid-column: auto / span 1;
 30 }
 31 #cardtype {
 32 text-align: left;
 33 }
 34 #entry_mode, #batch_group {
 35 text-align: right;
 36 }
 37 #auth_group, #batch_group {
 38 display: inline-block;
 39 }

C.3.2.4 Complex CSS styling example

 1 * {
 2 margin: 0;
 3 padding: 0;
 4 }
 5 main {
 6 padding: 1rem;
 7 display: grid;
 8 grid-template-columns: 1fr 1fr;
 9 grid-template-rows: auto;
 10 position: relative;
 11 }
 12 #rcpt_merch_info {
 13 font-size: 1.2rem;
 14 }
 15 #rcpt_reference {
 16 font-size: .9rem;
 17 display: grid;
 18 grid-template-columns: 1fr 1fr 1fr;
 19 }
 20 #rcpt_merch_info, #rcpt_reference, #rcpt_money {
 21 padding: 1rem;
 22 margin: 1rem;
 23 background-color: #F8F8F8;
 24 border: 1px solid #E9E9E9;
 25 }
 26 #rcpt_merch_info, #rcpt_reference {
 27 grid-column: auto / span 1;
 28 }
 29 #rcpt_merch_info:before, #rcpt_reference:before {

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 118

 30 font-weight: bold;
 31 display: block;
 32 font-size: 1rem;
 33 margin-bottom: .75rem;
 34 }
 35 #rcpt_merch_info:before {
 36 content: "Store Information:";
 37 }
 38 #rcpt_reference:before {
 39 content: "Transaction Details:";
 40 grid-column: auto / span 3;
 41 order: -4;
 42 }
 43 .rcpt_group_label:after {
 44 content: ": ";
 45 }
 46 #rcpt_reference .rcpt_group {
 47 display: flex;
 48 justify-content: space-between;
 49 padding: .25rem;
 50 grid-column: auto / span 3;
 51 }
 52 #rcpt_reference .rcpt_val {
 53 margin-bottom: .5rem;
 54 }
 55 #rcpt_reference .rcpt_group:nth-child(even) {
 56 background-color: #E9E9E9;
 57 }
 58 #action, #auth_result {
 59 text-transform: uppercase;
 60 }
 61 #action {
 62 order: -3;
 63 }
 64 #cardtype {
 65 order: -2;
 66 text-align: center;
 67 }
 68 #entry_mode {
 69 order: -1;
 70 text-align: right;
 71 }
 72 #entry_mode:before {
 73 content: "Entry Mode: ";
 74 }
 75
 76 #rcpt_money {
 77 grid-column: auto / span 2;
 78 text-align: right;
 79 }
 80 #totalamount_group {
 81 font-size: 1.4rem;
 82 font-weight: 700;
 83 }
 84 #rcpt_disposition {
 85 grid-column: auto / span 2;
 86 text-align: center;
 87 margin: 1rem;

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 119

 88 padding: 1rem;
 89 margin-top: 0;
 90 padding-top: 0;
 91 }
 92 #auth_result {
 93 font-weight: 700;
 94 font-size: 1.2rem;
 95 }
 96 #rcpt_signature, #rcpt_notice {
 97 grid-column: auto / span 2;
 98 text-align: center;
 99 color: #777;
 100 }
 101 @media (max-width: 800px) {
 102 #rcpt_merch_info, #rcpt_reference {
 103 grid-column: auto / span 2;
 104 }
 105 #rcpt_merch_info:before, #rcpt_reference:before {
 106 text-align: center;
 107 }
 108 #rcpt_merch_info {
 109 text-align: center;
 110 }
 111 #rcpt_money {
 112 text-align: center;
 113 }
 114 header {
 115 padding: .5rem;
 116 flex-direction: column;
 117 }
 118 }

C.3.3 XML and JSON format

For XML each block has a top level element with the block name, E.g. merch_info,
reference.

JSON will not have the top level element name surrounding the data.

Block and elements:

• merch_info:
• merch_name

• merch_addr1

• merch_addr2

• merch_addr3

• merch_phone

• merch_email

• merch_url

• reference:
• action

• merch_id

• laneid

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 120

• cardtype

• rcpt_entry_mode

• rcpt_acct_type

• account

• time

• ordernum

• custref

• ttid

• rcpt_issuer_resp_code

• rcpt_resp_code

• auth

• batch

• stan

• rcpt_custom

• Custom/Undocumented items here

• money:
• amount

• tip

• tax

• cashbackamount

• totalamount

• authamount

• balance

• disposition:
• card_status

• pin_status

• auth_result

• auth_mode

• printdata

• signature:
• line

• agreement

• cardholdername

• sigcaptured

• emv:
• name

• aid

• tvr

• tsi

• actype

• ac

• notice:
• message

• copy

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 121

D EMV Receipt Requirements (for Manual Receipt
formatting)

The UniTerm application never directly generate receipts, but it can emit pre-formatted blocks
for receipts. This section relates to complete manual receipt generation not using pre-formatted
blocks. It is the integrator's responsibility to generate all proper receipts for both customer and
merchant retention. What constitutes a proper receipt is dependent on a number of factors such
as industry, card present vs card not present, and card entry method (for card present).

As of UniTerm v9.1, additional receipt generation helpers were added and are recommended
for use rather than manually formatting a receipt as per this section. Please see Appendix C.

The purpose of this section is to provide general information about the receipt data
UniTerm will return and how to use it generate a receipt. This does not cover all aspects of
receipt generation. It also does not cover processor specific formatting requirements. It is
recommended to verify receipts and receipt formatting with your processor before going into
production.

Also there are typically two types of receipts printed. A merchant and a customer copy. Each
one will have most of the same information but there are slight differences between the two.

D.1 Receipt content

D.1.1 Base receipt content

Receipts should include the following blocks and data elements in roughly the order provided
below. All data is required if returned by UniTerm, or otherwise available, unless otherwise
noted.

• Merchant Info Header
• Name - merch_name
• Address - merch_addr1, merch_addr2, merch_addr3
• Phone (optional) - merch_phone
• Email (optional) - merch_email
• Website (optional) - merch_url
• Merchant ID - required by some processors. Recommended to omit or truncate, see
merch_id response documentation for more information.

• Lane ID (optional) - laneid or stationid request parameter.
• Transaction type - request parameter action or equivalent text
• Card information

• Type - cardtype
• Entry mode - rcpt_entry_mode - or equivalent text, some processors may have explicit

mappings they require.
• Interac Account Type - rcpt_acct_type or for Interac Flash (contactless) transactions,

must display INTERAC FLASH DEFAULT. Integrators must convert the UniTerm-returned
value of checking to chequing to comply with Interac requirements.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 122

• Masked Account Number - account - If using the returnbin feature, the first 6 digits
may also be returned in the clear. It is the integrator's responsibility to ensure only the last
4 digits of the account number are provided in the clear.

• Transaction reference info

• Date and time - rcpt_host_ts or timestamp

• Identifier - request parameters ordernum or ptrannum

• Additional identifiers (optional) - request parameters such as custref

• ttid (optional) - either request or response ttid

• Batch number - batch

• Auth number (if authorized) - auth

• Trace information - stan

• Processor response code (some processors may require this) - rcpt_resp_code

• Issuer response code (some processors may require this) - rcpt_issuer_resp_code

• Purchase or Service description. POS systems are mandated by the card brands to output
a description of the charge, the most common form is an itemized list of charges. No
information returned from UniTerm can be used for this purpose, the POS system is
expected to be able to generate this on their own.

• Processor specific custom data - see rcpt_custom

• Monetary amounts

• Tip - Request parameter examount

• Tax - Request parameter tax

• Cash back - Request parameter cashbackamount

• Authorized Amount - authamount if returned, otherwise request parameter amount

• Balance - balance

• Transaction disposition

• Card disposition - See Card Disposition documentation

• Partial Approval Indicator - if authamount returned

• Overall disposition (approved/declined) - code

• Additional Print Data - printdata, Additional data meant to be printed on the receipt as
provided by the processor. Often used for gift/loyalty programs.

• Cardholder Verification

• Signature line (if necessary) - u_need_signature=yes

• Cardholder Name, centered under signature line if a signature line is shown (optional) -
cardholdername

• PIN Entry - Verified by PIN or PIN Bypassed if appropriate

• EMV data

• Application name - rcpt_emv_name

• AID - rcpt_emv_aid

• TVR - rcpt_emv_tvr

• TSI - rcpt_emv_tsi

• Application Cryptogram Type and Cryptogram Value (optional) - rcpt_emv_actype
and rcpt_emv_ac

• Cardholder Notice (such as stating merchant vs customer copy) (optional) - see receipt
examples

• Refund or Cancellation Policy. Card brands require all merchant receipts contain a Refund
or Cancellation policy. Such a policy should be merchant-configurable by the integrated
POS system. UniTerm does not aid in fulfilling this requirement.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 123

D.2 Receipt Data Returned by UniTerm

PARAMETER OVERVIEW

timestamp Unix timestamp representing the time and date
the transaction took place, this should be used
to derive the transaction date if rcpt_host_ts
is not returned.

rcpt_host_ts (REQUIRED): The time and date recorded
from the processor the transaction took place.
MMDDYYHHMMSS format. Use timestamp if
this value is not present in the response.

rcpt_entry_mode (REQUIRED): Indicates how the card data was
captured. Possible values are:

• G: Keyed entry (EMV Fallback)
• M: Keyed entry
• T: EMV Contactless
• C: EMV Contact
• F: Swipe (EMV Fallback)
• R: MSD (RFID) Contactless
• S: Swipe
• I: MICR Check Read

rcpt_acct_type Interac specific account type chosen by the
customer.

rcpt_emv_cvm For EMV transactions this is the cardholder
verification method performed. Possible values
are:

• none

• sig

• pin

• pinsig

• skipped - Used for some contactless
transactions below the CVM floor.

• cdcvm - Card Holder Device verification.
The user's device (usually smart phone)
validated the user's identity.

• unknown

For "pin" and "pinsig" the receipt should
say "VERIFIED BY PIN". For "sig" a
signature should be captured.

rcpt_emv_pinbypass Returned as true if the cardholder explicitly
requested the pin to be bypassed, false or not
provided at all otherwise. Receipt should say
"PIN BYPASSED".

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 124

rcpt_resp_code Response code returned from the processing
institution.

rcpt_issuer_resp_code Response code returned from the issuer.

language Cardholder's language preference. The receipt
should be created using this language if
possible and shall contain the 2 character ISO
language code.

batch The batch number associated with the
transaction.

cardtype Monetra cardtype value. This is the value that
would have been configured in supported card
types for the account. Use this to take card
specific action in receipt generation.

balance Current balance on the card after the
transaction.

rcpt_emv_aid Card Application ID (AID) used

rcpt_emv_name Textual name of card application used.

rcpt_emv_tvr Transaction verification results.

rcpt_emv_tsi Transaction status information.

rcpt_emv_actype (optional). Application Cryptogram type.

• AAC - Application Authentication
Cryptogram (decline)

• ARQC - Application Request Cryptogram
(intermediate or contactless)

• TC - Transaction Certificate (offline or final
approval)

rcpt_emv_ac (optional). Application Cryptogram.

code Used to determine if the transaction was
approved or declined.

account Masked account number.

cardholdername Customers name as encoded on the card.

auth Authorization code.

stan Processor system trace information (mainly
used for pin-debit transactions).

authamount If the amount authorized is different than the
requested amount this is the amount that must
show on the receipt. It is possible that the
integration could pool multiple transactions on
one receipt and in that case the authamount
needs to be present for each card along with
other card specific receipt data. Note that some
processors do not allow pooling card data onto

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 125

one receipt and require separate receipts per
card.

rcpt_custom List of comma separated key:value pairs with
additional processor specific data that needs to
appear on the receipt.

u_errorcode On failure this will provide some information
about the failure. Specifically important to
receipt processing are the EMV_CARD_REMOVED
and EMV_CARD_DENY values.

u_need_signature Used to determine if a signature line is
required.

printdata Additional processor-provided data returned
by some processors that is intended to be
printed on receipts. Often used for Gift/Loyalty
programs. Please consult with your processor
for more information.

issuer_decline Boolean (yes/no). Currently this value is only
returned by Moneris, and is used to indicate if
a decline was due to an issuer decline or a local
processor decline. The purpose of this response
parameter is that Moneris has different receipt
messaging requirements based on who declined
the transaction.

merch_name Merchant Name if configured in merchant
profile. Cached by UniTerm from merchinfo
request and sent on every transaction response.

merch_addr1 Merchant Address Line 1 if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_addr2 Merchant Address Line 2 if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_addr3 Merchant Address Line 3 if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_phone Merchant Phone Number if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_email Merchant Contact Email if configured in
merchant profile. Cached by UniTerm from

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 126

merchinfo request and sent on every
transaction response.

merch_url Merchant URL or Website if configured
in merchant profile. Cached by UniTerm
from merchinfo request and sent on every
transaction response.

merch_id Merchant ID truncated to only the last 4
digits if available. Cached by UniTerm
from merchinfo request and sent on every
transaction response. The Merchant ID is
required by some processors for EMV, though
due to rampant "return fraud", we strongly
discourage integrators from providing the full
Merchant ID on receipts. Instead, if you choose
to display the merchant id, it should display
only the last 4 digits. This field can be used for
that purpose.

merch_proc Merchant Processing Institution (internal name)
used. Cached by UniTerm from merchinfo
request and sent on every transaction
response. This may be used to trigger different
receipt formats based on processor-specific
requirements.

D.3 Receipt Data NOT Returned by UniTerm

This is information is data that may have been sent to UniTerm on the request that should be
on the receipt.

PARAMETER OVERVIEW

Transaction Type The initiating application should know which transaction type
is being preformed (Sale, Refund etc.).

Transaction Identifier ordernum or ptrannum if present.

Additional Identifier custref if present.

ttid When performing a transaction such as return by ttid the
referenced ttid should be present on the receipt. This will aid
in tracking the original transaction that was returned.

Amount Information • Tip - Tip amount for order as provided in the examount
field in request.

• Tax - Tax amount for order
• Amount - Authorized amount, either the amount passed

in or the partially approved amount provided in the
authamount field.

• Cash Back Amount - Amount of Cash Back

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 127

Card Disposition • When u_errorcode is EMV_CARD_REMOVED, should say:
"CARD REMOVED"

• When u_errorcode is EMV_CARD_DENY, should say:
"DECLINED BY CARD"

• When rcpt_emv_cvm is pin or pinsig, should say:
"VERIFIED BY PIN"

• When rcpt_entry_mode is F or G, should say: "CHIP
CARD SWIPED"

• When authamount is returned and is not equal to
requested amount, should say: "TRANSACTION
PARTIALLY APPROVED"

• When code is CALL, should say: "CALL ISSUER"

D.4 Signature Line Requirements

The only time a signature line is necessary when using UniTerm is when
u_need_signature=yes. Internally UniTerm will handle logic to determine if the signature line
is needed on the paper receipt.

When set to yes this indicates that a signature line is required on the receipt. If possible
UniTerm will attempt to capture the signature thought the device. If this fails or is not possible
then this value will indicate that signature is still required.

D.5 Merchant vs Customer Copy

For the most part merchant and customer receipt requirements are identical, though there are a
couple of minor exceptions.

Merchant receipts must NOT contain a balance line

Customer receipt must not contain a signature line

D.6 Moneris Requirements

Moneris has additional receipt requirements that are not covered by this section due to direct
contradictions with requirements as provided by other processing institutions and the card
brands themselves. The receipt requirements documented are insufficient to comply with
Moneris requirements but do comply with the card brand requirements. The additional
requirements imposed are specific to Moneris and appear to be arbitrary, a large enough
merchant might be able to negotiate different receipt formats since there is no industry
regulation being followed.

If intending to work with Moneris, it is required that integrators create a custom receipt
template specific to Moneris that is used only on Moneris, and a separate template that
is used for all other processors. Integrators must contact Moneris directly to receive their
receipt formatting requirements. UniTerm does return sufficient data to format the Moneris-
specific receipts, it simply may require some data to be manipulated, formatted, or translated to
different languages to comply with their requirements.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 128

Note: UniTerm supports multiple languages for receipts and display, however Moneris
prohibits use of any languages other than English and French.

D.7 Receipt Examples

Monetra Technologies successfully certified EMV, across several processors, using the
examples provided below. Note these examples were designed to format properly on a
common 25 character receipt printer.

Note: Receipt requirements required for the card brands for EMV and various processors
tend to be very strict. We strongly recommend integrators make their receipts resemble those
of the examples as closely as possible. Any divergence from the receipt examples provided
below may require you seek validation of such receipts from your processor.

D.7.1 EMV Insert, Signature Required

D.7.1.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0119

auth 152013

batch 1

cardholdername VISA ACQUIRER TEST/CARD 01

cardlevel VISA_TRADITIONAL

cardtype VISA

code AUTH

item 27

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1834

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc GLOBALPAY

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom REC #:000027,TRN REF

#:355724280069888,VAL CODE:BBCD

rcpt_emv_ac 8F73ED36C8F2C099

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 129

rcpt_emv_actype TC

rcpt_emv_aid A0000000031010

rcpt_emv_cvm sig

rcpt_emv_name CREDITO DE VISA

rcpt_emv_tsi F800

rcpt_emv_tvr 0280008000

rcpt_entry_mode C

rcpt_host_ts 092215174640

rcpt_issuer_resp_code 00

rcpt_resp_code 000

stan 378222

timestamp 1442944083

ttid 29

u_errorcode SUCCESS

u_need_signature yes

verbiage AP

D.7.1.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0119
Time: 09/22/15 17:46:40
Order #: 1842
TTID: 29
RespCode: 00/000
Auth: 152013 Batch: 1
STAN: 378222
REC #: 000027
TRN REF #:355724280069888
VAL CODE: BBCD

AMOUNT: 1.00

 APPROVED

SIGNATURE

X________________________
 VISA ACQUIRER TEST/CARD
 01

CARDHOLDER WILL PAY CARD
 ISSUER ABOVE AMOUNT

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 130

 PURSUANT TO CARDHOLDER
 AGREEMENT

CREDITO DE VISA
AID A0000000031010
TVR 0280008000
TSI F800
TC 8F73ED36C8F2C099

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0119
Time: 09/22/15 17:46:40
Order #: 1842
TTID: 29
RespCode: 00/000
Auth: 152013 Batch: 1
STAN: 378222
REC #: 000027
TRN REF #:355724280069888
VAL CODE: BBCD

AMOUNT: 1.00

 APPROVED

CREDITO DE VISA
AID A0000000031010
TVR 0280008000
TSI F800
TC 8F73ED36C8F2C099

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 131

D.7.2 EMV Insert, PIN Verified

D.7.2.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0036

auth 602664

batch 1

cardholdername VISA ACQUIRER TEST/CARD 03

cardlevel VISA_TRADITIONAL

cardtype VISA

code AUTH

item 7

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1834

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc GLOBALPAY

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom REC #:000007,TRN REF

#:638114437174992,VAL CODE:BBCD

rcpt_emv_ac 2F0346EBCA494BF4

rcpt_emv_actype TC

rcpt_emv_aid A0000000031010

rcpt_emv_cvm pin

rcpt_emv_name CREDITO DE VISA

rcpt_emv_tsi F800

rcpt_emv_tvr 0080008000

rcpt_entry_mode C

rcpt_host_ts 092215172258

rcpt_issuer_resp_code 00

rcpt_resp_code 000

stan 563536

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 132

timestamp 1442942662

ttid 7

u_errorcode SUCCESS

verbiage AP

D.7.2.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0036
Time: 09/22/15 17:22:58
Order #: 5705
TTID: 7
RespCode: 00/000
Auth: 602664 Batch: 1
STAN: 563536
REC #: 000007
TRN REF #:638114437174992
VAL CODE: BBCD

AMOUNT: 337.00

 VERIFIED BY PIN

 APPROVED

CREDITO DE VISA
AID A0000000031010
TVR 0080008000
TSI F800
TC 2F0346EBCA494BF4

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0036
Time: 09/22/15 17:22:58
Order #: 5705
TTID: 7
RespCode: 00/000

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 133

Auth: 602664 Batch: 1
STAN: 563536
REC #: 000007
TRN REF #:638114437174992
VAL CODE: BBCD

AMOUNT: 337.00

 VERIFIED BY PIN

 APPROVED

CREDITO DE VISA
AID A0000000031010
TVR 0080008000
TSI F800
TC 2F0346EBCA494BF4

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 134

D.7.3 EMV Insert, No CVM

D.7.3.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXX1005

auth 232508

batch 1

cardholdername AEIPS 32/VER 1.0

cardtype AMEX

code AUTH

item 2

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1836

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc GLOBALPAY

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_custom REC #:000002,TRN REF

#:416237190201752

rcpt_emv_ac 5C221DC28EB72FCF

rcpt_emv_actype TC

rcpt_emv_aid A000000025010801

rcpt_emv_cvm none

rcpt_emv_name AMERICAN EXPRESS

rcpt_emv_tsi F800

rcpt_emv_tvr 0000008000

rcpt_entry_mode C

rcpt_host_ts 092515194045

rcpt_issuer_resp_code 000

rcpt_resp_code 000

stan 000514

timestamp 1443210133

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 135

ttid 79

u_errorcode SUCCESS

verbiage AP

D.7.3.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1836 Lane: 1
AMEX C
Card: XXXXXXXXXXX1005
Time: 09/25/15 19:40:45
Order #: 41
TTID: 79
RespCode: 000/000
Auth: 232508 Batch: 1
STAN: 000514
REC #: 000002
TRN REF #:416237190201752

AMOUNT: 62.00

 APPROVED

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008000
TSI F800
TC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1836 Lane: 1
AMEX C
Card: XXXXXXXXXXX1005
Time: 09/25/15 19:40:45
Order #: 41
TTID: 79
RespCode: 000/000
Auth: 232508 Batch: 1
STAN: 000514
REC #: 000002
TRN REF #:416237190201752

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 136

AMOUNT: 62.00

 APPROVED

AMERICAN EXPRESS
AID A000000025010801
TVR 0000008000
TSI F800
TC 5C221DC28EB72FCF

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 137

D.7.4 EMV Insert, Card Decline

D.7.4.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0010

cardtype VISA

code DENY

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1834

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc GLOBALPAY

rcpt_emv_ac BA9BD3FAC8ADD6C7

rcpt_emv_actype AAC

rcpt_emv_aid A0000000031010

rcpt_emv_cvm pin

rcpt_emv_name CREDITO DE VISA

rcpt_emv_tsi E800

rcpt_emv_tvr 0280A08000

rcpt_entry_mode C

rcpt_host_ts 092215134154

u_errorcode EMV_CARD_DENY

verbiage Transaction aborted - declined by

card

D.7.4.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0010
Time: 09/22/15 13:41:54
Order #: 17421

AMOUNT: 22.00

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 138

 DECLINED BY CARD
 VERIFIED BY PIN

 DECLINED

CREDITO DE VISA
AID A0000000031010
TVR 0280A08000
TSI E800
AAC BA9BD3FAC8ADD6C7

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1834 Lane: 1
VISA C
Card: XXXXXXXXXXXX0010
Time: 09/22/15 13:41:54
Order #: 17421

AMOUNT: 22.00

 DECLINED BY CARD
 VERIFIED BY PIN

 DECLINED

CREDITO DE VISA
AID A0000000031010
TVR 0280A08000
TSI E800
AAC BA9BD3FAC8ADD6C7

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 139

D.7.5 EMV Insert, Card Removed (Decline)

D.7.5.1 UniTerm Response Data

PARAMETER VALUE

code DENY

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1818

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc GLOBALPAY

u_errorcode EMV_CARD_REMOVED

verbiage Card Removed

D.7.5.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1818 Lane: 1
Time: 09/24/15 14:43:46
Order #: 6224

AMOUNT: 1.00

 CARD REMOVED

 DECLINED

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1818 Lane: 1
Time: 09/24/15 14:43:46
Order #: 6224

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 140

AMOUNT: 1.00

 CARD REMOVED

 DECLINED

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 141

D.7.6 EMV Insert, Interac

D.7.6.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX1933

auth 175180

avs UNKNOWN

batch 1

cardholdername Test Card 1

cardtype INTERAC

code AUTH

item 10

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 3636

merch_name MERCHANT NAME

merch_phone (888) 555-1234

merch_proc PAYMENTECH

msoft_code INT_SUCCESS

pclevel 0

phard_code SUCCESS

rcpt_acct_type checking

rcpt_emv_ac 882D8427A268E214

rcpt_emv_actype TC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm pin

rcpt_emv_name Interac

rcpt_emv_tsi 7800

rcpt_emv_tvr 8000008000

rcpt_entry_mode C

rcpt_host_ts 092515155118

rcpt_resp_code A

stan 00298722

timestamp 1443210676

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 142

ttid 10

u_errorcode SUCCESS

verbiage APPROVED

D.7.6.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 3636 Lane: 1
INTERAC C
Acct Type: CHEQUING
Card: XXXXXXXXXXXX1933
Time: 09/25/15 15:51:18
Order #: 899065992
TTID: 10
RespCode: A
Auth: 175180 Batch: 1
STAN: 00298722

AMOUNT: 5.01

 VERIFIED BY PIN

 APPROVED

Interac
AID A0000002771010
TVR 8000008000
TSI 7800
TC 882D8427A268E214

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT COPY

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 3636 Lane: 1
INTERAC C
Acct Type: CHEQUING
Card: XXXXXXXXXXXX1933
Time: 09/25/15 15:51:18
Order #: 899065992
TTID: 10
RespCode: A
Auth: 175180 Batch: 1
STAN: 00298722

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 143

AMOUNT: 5.01

 VERIFIED BY PIN

 APPROVED

Interac
AID A0000002771010
TVR 8000008000
TSI 7800
TC 882D8427A268E214

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 144

D.7.7 EMV Contactless, Interac Flash Decline

D.7.7.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXXXXX1311

cardtype INTERAC

code DENY

issuer_decline yes

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

phard_code GENERICFAIL

printdata CARD CANCELLED*REFER TO BRANCH

rcpt_acct_type flash

rcpt_custom refnum:660136000010016710

rcpt_emv_ac ED538D29D3390729

rcpt_emv_actype ARQC

rcpt_emv_aid A0000002771010

rcpt_emv_cvm unknown

rcpt_emv_name Interac

rcpt_emv_tvr 0080008000

rcpt_entry_mode T

rcpt_host_ts 072015180303

rcpt_issuer_resp_code 05

rcpt_resp_code 058

sequenceid 671

timestamp 1437429783

ttid 861

u_errorcode MONETRA_ERROR

verbiage DECLINED * CARD CANCELLED

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 145

D.7.7.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

 SALE

MID: 1625 Lane: 1
INTERAC T
Acct Type: FLASH DEFAULT
Card: XXXXXXXXXXXXXXX1311
Date/Time: 072015180303
Order #: 899065992
TTID: 861
refnum:660136000010016710

AMOUNT: 1.09

 DECLINED

Interac
AID A0000002771010
TVR 0080008000
ARQC ED538D29D3390729

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 146

D.7.8 EMV Contactless, Decline

D.7.8.1 UniTerm Response Data

PARAMETER VALUE

account XXXXXXXXXXXX0010

cardholdername ETEC/PAYPASS

cardtype MC

code DENY

language en

merch_addr1 123 STREET NAME

merch_addr2 CITY, STATE ZIP

merch_id 1625

merch_name MERCHANT NAME

merch_phone (888) 555-1234

msoft_code INT_SUCCESS

phard_code GENERICFAIL

rcpt_custom refnum:660136000010016700

rcpt_emv_ac 16D1284D85A29DF2

rcpt_emv_actype ARQC

rcpt_emv_aid A0000000041010

rcpt_emv_cvm none

rcpt_emv_name PPC MCD 01 v2 2

rcpt_emv_tvr 0000008000

rcpt_entry_mode T

rcpt_issuer_resp_code 51

rcpt_resp_code 481

sequenceid 670

timestamp 1437429662

ttid 860

u_errorcode MONETRA_ERROR

verbiage DECLINED *

D.7.8.2 Example Receipt

 MERCHANT NAME
 123 STREET NAME
 CITY, STATE ZIP
 (888) 555-1234

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 147

 SALE

MID: 1625 Lane: 1
MC T
Card: XXXXXXXXXXXX0010
Date/Time: 072015180102
Order #: 899065992
TTID: 860
refnum:660136000010016700

AMOUNT: 10.51

 DECLINED

PPC MCD 01 v2 2
AID A0000000041010
TVR 0000008000
ARQC 16D1284D85A29DF2

 IMPORTANT - RETAIN THIS
 COPY FOR YOUR RECORDS

 MERCHANT/CUSTOMER COPY

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 148

E UniTerm Code Examples

E.1 Microsoft C# using libmonetra

 1 /* UniTerm example program in C#
 2 *
 3 * Depends on the libmonetra C# .Net native API
 4 *
 5 * Implemented based on the UniTerm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 using System;
 11 using System.Collections;
 12 using System.Diagnostics;
 13 using System.IO;
 14 using System.Text;
 15 using System.Threading;
 16 using libmonetra;
 17
 18 /* NOTE: if compiling with Mono, you can use
 19 * gmcs /unsafe utest.cs libmonetra.cs
 20 */
 21
 22 class UTest {
 23 /* Uniterm Connectivity Information
 24 * NOTE: this is the default, it is possible to change, but 99%
 25 * of deployments will probably use this Uniterm information
 26 * as-is
 27 */
 28 private const string uniterm_host = "localhost";
 29 private const int uniterm_port = 8123;
 30
 31 /* Authentication information
 32 * NOTE: This information corresponds with the public test server
 33 * at testbox.monetra.com:8665 */
 34 private const string monetra_user = "test_retail:public";
 35 private const string monetra_pass = "publ1ct3st";
 36
 37
 38 static string uniterm_path()
 39 {
 40 switch (Environment.OSVersion.Platform) {
 41 case PlatformID.Win32NT:
 42 case PlatformID.Win32S:
 43 case PlatformID.Win32Windows:
 44 case PlatformID.WinCE:
 45 return "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe";
 46 default:
 47 return "/usr/local/uniterm/bin/uniterm";
 48 }
 49 }
 50
 51 /*! Function to launch the Uniterm from the current process.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 149

 52 * If we don't launch it from the current process, it won't be given
 53 * focus! (at least on Windows this is true, until the first
 54 * manual focus is performed by an end-user) */
 55 static void uniterm_launch()
 56 {
 57 Process uniterm = new Process();
 58 uniterm.StartInfo.FileName = uniterm_path();
 59 uniterm.StartInfo.CreateNoWindow = true;
 60
 61 uniterm.Start();
 62
 63 /* Make sure Uniterm is ready before returning,
 64 * Sleep 1000ms (1s) */
 65 System.Threading.Thread.Sleep(1000);
 66 }
 67
 68
 69 /*! Function to connect to an endpoint which uses the standard 'monetra'
 70 * style protocol (so either Monetra itself, or Uniterm)
 71 * \param[in] host Resolvable hostname or IP address to connect to
 72 * \param[in] port Port associated with hostname to establish an SSL
 73 * connection to
 74 * \param[out] errorstr Textual error message if returns null
 75 * \return Initialized connection class on success. null on failure
 76 */
 77 static Monetra uniterm_connect_host(string host, int port, ref string errorstr)
 78 {
 79 /* Initialize the Class */
 80 Monetra conn = new Monetra();
 81
 82 errorstr = "";
 83
 84 /* We always want to use an SSL connection to Monetra and Uniterm */
 85 conn.SetSSL(host, port);
 86
 87 /* Do not verify the SSL certificate, Monetra and the Uniterm
 88 * use self-signed certificates by default which cannot be validated.
 89 * The connection is still encrypted, the endpoint just isn't strictly
 90 * validated */
 91 conn.VerifySSLCert(false);
 92
 93 /* This makes it so TransSend() will block until a response is
 94 * received from Monetra. Simplifies the API since we will never
 95 * have more than one outstanding transaction per connection in
 96 * this application */
 97 conn.SetBlocking(true);
 98
 99 /* Connect! */
 100 if (!conn.Connect()) {
 101 errorstr = conn.ConnectionError();
 102 return null;
 103 }
 104
 105 return conn;
 106 }
 107
 108
 109 /*! Wrapper function to connect to Uniterm

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 150

 110 * \param[out] errorstr Textual error message if returns null
 111 * \return Initialized connection class on success. null on failure
 112 */
 113 static Monetra uniterm_connect(ref string errorstr)
 114 {
 115 Monetra conn;
 116 string myerror = "";
 117 conn = uniterm_connect_host(uniterm_host, uniterm_port, ref myerror);
 118 if (conn == null) {
 119 errorstr = "Connection to Uniterm Failed: " + myerror;
 120 }
 121 return conn;
 122 }
 123
 124
 125 /*! Request a transaction from Uniterm as documented in the Uniterm Guide.
 126 * The Key/Value pair params are a combination of the Parameters as
 127 * documented in the Uniterm Guide and the Monetra Client Interface
 128 * Protocol Spec.
 129 * \param[in] uniterm_conn Initialized connection to Uniterm
 130 * as returned by uniterm_connect()
 131 * \param[in] mparams Array of key/value parameters to send to
 132 * Uniterm
 133 * \return Hashtable of string key/value pairs from response. Please refer
 134 * to the Uniterm Guide and Monetra Client Interface Protocol
 135 * specification for the applicable list based on the action being
 136 * performed. "code" and "u_errorcode" are always guaranteed to
 137 * be returned.
 138 */
 139 static Hashtable uniterm_sendrequest(Monetra uniterm_conn, Hashtable mparams)
 140 {
 141 int id;
 142
 143 Hashtable response = new Hashtable();
 144
 145 /* Request a new transaction from libmonetra */
 146 id = uniterm_conn.TransNew();
 147
 148 /* For each item in the params hashtable, add it to the transaction */
 149 foreach (DictionaryEntry kv in mparams) {
 150 uniterm_conn.TransKeyVal(id, (String)kv.Key, (String)kv.Value);
 151 }
 152
 153 /* Send the request to the Uniterm. It will not return until
 154 * a response is available, or a disconnect is detected */
 155 if (!uniterm_conn.TransSend(id)) {
 156 /* Disconnect detected, return an appropriate error condition!
 157 * This should really never happen though... */
 158 response["code"] = "DENY";
 159 response["u_errorcode"] = "CONN_ERROR";
 160 response["verbiage"] = "Connection to Uniterm failed: "
 161 + uniterm_conn.ConnectionError();
 162 return response;
 163 }
 164
 165 /* Save the response parameters from the Uniterm into a
 166 * HashTable as our function prototype states. */
 167 string[] keys = uniterm_conn.ResponseKeys(id);

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 151

 168 for (int i=0; i < keys.Length; i++) {
 169 response[keys[i]] = uniterm_conn.ResponseParam(id, keys[i]);
 170 }
 171
 172 /* Free up some memory by purging unneeded data */
 173 uniterm_conn.DeleteTrans(id);
 174
 175 return response;
 176 }
 177
 178
 179 /*! Tell Uniterm to shutdown. Since we start it up, we should make sure
 180 * we turn it off prior to exiting otherwise the user will be prompted
 181 * with an error message stating the Uniterm is already running on the
 182 * next execution of this application!
 183 * \param[in] uniterm_conn Initialized connection to the Uniterm
 184 * as returned by uniterm_connect()
 185 */
 186 static void uniterm_shutdown(Monetra uniterm_conn)
 187 {
 188 Hashtable mparams = new Hashtable();
 189 mparams["u_action"] = "shutdown";
 190 uniterm_sendrequest(uniterm_conn, mparams);
 191 }
 192
 193
 194 /*! Main entry point to this application to be executed */
 195 static void Main()
 196 {
 197 Monetra uniterm_conn;
 198 string errorstr = "";
 199 Hashtable response;
 200
 201 /* Step1: Launch the Uniterm */
 202 uniterm_launch();
 203 Console.WriteLine("Uniterm Launched");
 204
 205 /* Step2: Connect to the Uniterm */
 206 uniterm_conn = uniterm_connect(ref errorstr);
 207 if (uniterm_conn == null) {
 208 Console.WriteLine("Failure: " + errorstr);
 209 return;
 210 }
 211 Console.WriteLine("Connected to Uniterm");
 212
 213
 214 /* Step3: Send txnrequest to Uniterm */
 215 Hashtable mparams = new Hashtable();
 216 /* Append the parameters for the txnrequest */
 217 mparams["username"] = monetra_user;
 218 mparams["password"] = monetra_pass;
 219 mparams["u_action"] = "txnrequest";
 220 mparams["u_devicetype"] = "ingenico_rba";
 221 mparams["u_device"] = "HID";
 222
 223 /* Append the parameters for the transaction that will also get passed
 224 * to Monetra such as the 'action', 'amount', etc. as described in the
 225 * Monetra Client Interface Protocol Specification */

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 152

 226 mparams["action"] = "sale";
 227 mparams["amount"] = "12.00";
 228 mparams["ordernum"] = "123456";
 229 mparams["comments"] = "u_txnrequest";
 230
 231 response = uniterm_sendrequest(uniterm_conn, mparams);
 232 if (String.Compare((string)response["code"], "AUTH", true) != 0) {
 233 Console.WriteLine("Transaction failed.");
 234 } else {
 235 Console.WriteLine("Transaction SUCCESSFUL!");
 236 }
 237
 238 /* Print out all the response key/value pairs ... */
 239 foreach (DictionaryEntry kv in response) {
 240 Console.WriteLine("\t" + (string)kv.Key + " = " + (string)kv.Value);
 241 }
 242
 243 /* NOTE: No real reason to exit here ... we could just keep running
 244 * Step 3 all day long as long as you keep the uniterm_conn handle.
 245 * No reason to keep disconnecting and reconnecting, or
 246 * starting/stopping the Uniterm.
 247 */
 248
 249 /* Step4: Cleanup */
 250 uniterm_shutdown(uniterm_conn);
 251
 252 /* Connections will be automatically closed when the uniterm_conn
 253 * initialized class is closed by the destructor/garbage
 254 * collector */
 255 }
 256
 257 }
 258
 259

E.2 Microsoft C# using XML and HttpWebRequest

 1 /* UniTerm example program in C# using XML and HttpWebRequest
 2 *
 3 * Works with .Net Compact Framework v2
 4 *
 5 * Implemented based on the UniTerm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 using System;
 11 using System.Diagnostics;
 12 using System.Collections.Generic;
 13 using System.Text;
 14 using System.IO;
 15 using System.Threading;
 16 using System.Collections;
 17 using System.Net;
 18 using System.Xml;
 19 using System.ComponentModel;
 20 using System.Windows.Forms;

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 153

 21 using System.Security.Cryptography.X509Certificates;
 22
 23 /* NOTE: if compiling with Mono, you can use
 24 * gmcs -r:System.Windows.Forms.dll utest_xml.cs
 25 */
 26
 27 class utest_xml
 28 {
 29 /* Uniterm Connectivity Information
 30 * NOTE: this is the default, it is possible to change, but 99%
 31 * of deployments will probably use this Uniterm information
 32 * as-is
 33 */
 34 private const string uniterm_host = "localhost";
 35 private const int uniterm_port = 8123;
 36
 37 /* Authentication information
 38 * NOTE: This information corresponds with the public test server
 39 * at testbox.monetra.com:8665 */
 40 private const string monetra_user = "test_retail:public";
 41 private const string monetra_pass = "publ1ct3st";
 42
 43
 44 static string uniterm_path()
 45 {
 46 switch (Environment.OSVersion.Platform) {
 47 case PlatformID.Win32NT:
 48 case PlatformID.Win32S:
 49 case PlatformID.Win32Windows:
 50 case PlatformID.WinCE:
 51 return "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe";
 52 default:
 53 return "/usr/local/uniterm/bin/uniterm";
 54 }
 55 }
 56
 57
 58 /*! Function to launch Uniterm from the current process.
 59 * If we don't launch it from the current process, it won't be given
 60 * focus! (at least on Windows this is true, until the first
 61 * manual focus is performed by an end-user) */
 62 static void uniterm_launch()
 63 {
 64 Process uniterm = new Process();
 65 uniterm.StartInfo.FileName = uniterm_path();
 66 /* Not supported on CE
 67 * uniterm.StartInfo.CreateNoWindow = true;
 68 */
 69
 70 uniterm.Start();
 71
 72 /* Make sure Uniterm is ready before returning,
 73 * Sleep 1000ms (1s) */
 74 System.Threading.Thread.Sleep(1000);
 75 }
 76
 77
 78 /*! Trust all SSL server certificates */

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 154

 79 internal class AcceptAllCertificatePolicy : ICertificatePolicy
 80 {
 81 public AcceptAllCertificatePolicy()
 82 {
 83 }
 84 public bool CheckValidationResult(ServicePoint sPoint,
 85 X509Certificate cert,
 86 WebRequest wRequest, int certProb)
 87 {
 88 // *** Always accept
 89 return true;
 90 }
 91 }
 92
 93
 94 /*! Function to POST and XML message to a Monetra-like entity
 95 * (Monetra or Uniterm) via HTTPS. It will return
 96 * the key/value pairs from the XML response
 97 * \param[in] host Host to connect to
 98 * \param[in] port Port to connect to (via SSL/HTTPS)
 99 * \param[in] xml String-form XML to post
 100 * \return True on successful communication, False if communication failed.
 101 * Note: True doesn't mean the transaction itself was successful.
 102 */
 103 static Hashtable uniterm_https_post(string host, int port, string xml)
 104 {
 105 Hashtable response = new Hashtable();
 106 string url = "https://" + host + ":" + port.ToString();
 107 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
 108 string xmlout;
 109
 110 try {
 111 /* POST Request */
 112
 113 /* Disable SSL Server Certificate Checking */
 114 System.Net.ServicePointManager.CertificatePolicy =
 115 new AcceptAllCertificatePolicy();
 116
 117 byte[] bytes;
 118 bytes = System.Text.Encoding.ASCII.GetBytes(xml);
 119 req.Method = "POST";
 120 req.ContentType = "text/xml";
 121 req.ContentLength = bytes.Length;
 122 Stream reqStream = req.GetRequestStream();
 123 reqStream.Write(bytes, 0, bytes.Length);
 124 reqStream.Close();
 125
 126 /* Read Response */
 127 /* Note issues with .Net CF v2 as per below:
 128 * http://blogs.msdn.com/b/andrewarnottms/archive/2007/11/19/why-net-compact-framework-fails-to-call-some-https-web-servers.aspx
 129 * http://support.microsoft.com/kb/970549
 130 * If the Server is OpenSSL, this can be worked around by setting
 131 * SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
 132 */
 133 HttpWebResponse resp = (HttpWebResponse)req.GetResponse();
 134 Stream respStream = resp.GetResponseStream();
 135 StreamReader rdr = new StreamReader(respStream);
 136 xmlout = rdr.ReadToEnd();

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 155

 137 rdr.Close();
 138 } catch (System.Net.WebException e) {
 139 response["code"] = "DENY";
 140 response["u_errorcode"] = "CONN_ERROR";
 141 response["verbiage"] = "Connection to " + url + " failed: " +
 142 e.Message;
 143 return response;
 144 }
 145 XmlDocument xmldoc = new XmlDocument();
 146 xmldoc.LoadXml(xmlout);
 147
 148 XmlNodeList trans = xmldoc.DocumentElement.
 149 SelectSingleNode("Resp").ChildNodes;
 150 foreach (XmlNode kv in trans) {
 151 response[kv.Name] = kv.InnerText;
 152 }
 153 return response;
 154 }
 155
 156
 157 /*! Request a ttransaction from Uniterm as documented in the Monetra
 158 * Uniterm Guide. The Key/Value pair params are a combination of the
 159 * Parameters as documented in the Uniterm Guide and the Monetra Client
 160 * Interface Protocol Spec.
 161 * \param[in] mparams Array of key/value parameters to send to Uniterm
 162 * \return Hashtable of string key/value pairs from response. Please refer
 163 * to the Uniterm Guide and Monetra Client Interface Protocol
 164 * specification for the applicable list based on the action being
 165 * performed. "code" and "u_errorcode" are always guaranteed to
 166 * be returned.
 167 */
 168 static Hashtable uniterm_sendrequest(Hashtable mparams)
 169 {
 170 string XML;
 171
 172 XML = "<MonetraTrans>" +
 173 "<Trans identifier='1'>";
 174
 175 /* For each item in the params hashtable, add it to the transaction */
 176 foreach (DictionaryEntry kv in mparams) {
 177 XML = XML + "<" + (String)kv.Key + ">" + (String)kv.Value + "</" +
 178 (string)kv.Key + ">";
 179 }
 180
 181 XML = XML + "</Trans></MonetraTrans>";
 182
 183 return uniterm_https_post(uniterm_host, uniterm_port, XML);
 184 }
 185
 186
 187 /*! Tell Uniterm to shutdown. Since we start it up,
 188 * we should make sure we turn it off prior to exiting otherwise
 189 * the user will be prompted with an error message stating
 190 * Uniterm is already running on the next execution
 191 * of this application!
 192 */
 193 static void uniterm_shutdown()
 194 {

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 156

 195 Hashtable mparams = new Hashtable();
 196 mparams["u_action"] = "shutdown";
 197 uniterm_sendrequest(mparams);
 198 }
 199
 200
 201 /*! Main entry point to this application to be executed */
 202 static void Main()
 203 {
 204 Hashtable response;
 205
 206 /* Step1: Launch Uniterm */
 207 uniterm_launch();
 208 MessageBox.Show("Uniterm Launched");
 209
 210
 211 /* Step2: Send txnrequest to Uniterm */
 212 Hashtable mparams = new Hashtable();
 213 /* Append the parameters for the ticket request as per the Monetra
 214 * Uniterm Guide, section 4 */
 215 mparams["username"] = monetra_user;
 216 mparams["password"] = monetra_pass;
 217 mparams["u_action"] = "txnrequest";
 218 mparams["u_devicetype"] = "ingenico_rba";
 219 mparams["u_device"] = "HID";
 220
 221 /* Append the parameters for the transaction that will also get passed
 222 * to Monetra such as the 'action', 'amount', etc. as described in the
 223 * Monetra Client Interface Protocol Specification */
 224 mparams["action"] = "sale";
 225 mparams["amount"] = "12.00";
 226 mparams["ordernum"] = "123456";
 227 mparams["comments"] = "u_txnrequest";
 228
 229 response = uniterm_sendrequest(mparams);
 230 string resultMsg = "";
 231 if (String.Compare((string)response["code"], "AUTH", true) != 0) {
 232 resultMsg = "Transaction failed.\r\n";
 233 } else {
 234 resultMsg = "Transaction SUCCESSFUL!\r\n";
 235 }
 236
 237 /* Print out all the response key/value pairs ... */
 238 foreach (DictionaryEntry kv in response) {
 239 resultMsg = resultMsg + (string)kv.Key + " = " + (string)kv.Value +
 240 "\r\n";
 241 }
 242
 243 MessageBox.Show(resultMsg);
 244
 245 /* NOTE: No real reason to exit here ... we could just keep running
 246 * Step 2 all day long as long.
 247 * No reason to keep starting/stopping Uniterm.
 248 */
 249
 250 /* Step3: Cleanup */
 251 uniterm_shutdown();
 252

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 157

 253 /* Connections will be automatically closed when the uniterm_conn
 254 * initialized class is closed by the destructor/garbage
 255 * collector */
 256 }
 257 }
 258

E.3 Java using libmonetra

 1 /* Uniterm example program in Java
 2 *
 3 * Depends on the libmonetra Java native API
 4 *
 5 * Implemented based on the UniTerm Guide in conjunction with the
 6 * Monetra Client Interface Protocol Specification
 7 *
 8 * Please contact support@monetra.com with any questions
 9 */
 10 import java.util.Hashtable;
 11 import java.util.Enumeration;
 12 import com.mainstreetsoftworks.MONETRA;
 13
 14 /* Compile/run with:
 15 * javac -classpath MONETRA.jar utest.java
 16 * java -cp "./MONETRA.jar:." utest
 17 */
 18
 19 class utest {
 20 /* Uniterm Connectivity Information
 21 * NOTE: this is the default, it is possible to change, but 99%
 22 * of deployments will probably use this uniterm information
 23 * as-is
 24 */
 25 private static String uniterm_host = "localhost";
 26 private static int uniterm_port = 8123;
 27
 28 /* Authentication information
 29 * NOTE: This information corresponds with the public test server
 30 * at testbox.monetra.com:8665 */
 31 private static String monetra_user = "test_retail:public";
 32 private static String monetra_pass = "publ1ct3st";
 33
 34
 35 static String uniterm_path()
 36 {
 37 if (System.getProperty("os.name").startsWith("Windows")) {
 38 return "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe";
 39 } else {
 40 return "/usr/local/uniterm/bin/uniterm";
 41 }
 42 }
 43
 44
 45 /*! Function to launch Uniterm from the current process. If we don't
 46 * launch it from the current process, it won't be given focus!
 47 * (at least on Windows this is true, until the first manual focus is
 48 * performed by an end-user) */

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 158

 49 static void uniterm_launch()
 50 {
 51 try {
 52 Process p = new ProcessBuilder(uniterm_path()).start();
 53 } catch (java.io.IOException e) {
 54 System.out.println(e.getMessage());
 55 System.exit(1);
 56 }
 57 /* Make sure Uniterm is ready before returning,
 58 * Sleep 1000ms (1s) */
 59 try {
 60 Thread.sleep(1000);
 61 } catch (InterruptedException e) {
 62 }
 63 }
 64
 65
 66 /*! Function to connect to an endpoint which uses the standard 'monetra'
 67 * style protocol (so either Monetra itself, or Uniterm)
 68 * \param[in] host Resolvable hostname or IP address to connect to
 69 * \param[in] port Port associated with hostname to establish an SSL
 70 * connection to
 71 * \param[out] errorstr Textual error message if returns null
 72 * \return Initialized connection class on success. null on failure
 73 */
 74 static MONETRA uniterm_connect_host(String host, int port,
 75 StringBuilder errorstr)
 76 {
 77 /* Initialize the Class */
 78 MONETRA conn = new MONETRA("");
 79
 80 errorstr.setLength(0);
 81
 82 /* We always want to use an SSL connection to Monetra and Uniterm */
 83 conn.SetSSL(host, port);
 84
 85 /* Do not verify the SSL certificate, Monetra and Uniterm
 86 * use self-signed certificates by default which cannot be validated.
 87 * The connection is still encrypted, the endpoint just isn't strictly
 88 * validated */
 89 conn.VerifySSLCert(0);
 90
 91 /* This makes it so TransSend() will block until a response is
 92 * received from Monetra. Simplifies the API since we will never
 93 * have more than one outstanding transaction per connection in
 94 * this application */
 95 conn.SetBlocking(1);
 96
 97 /* Connect! */
 98 if (conn.Connect() == 0) {
 99 errorstr.append(conn.ConnectionError());
 100 return null;
 101 }
 102
 103 return conn;
 104 }
 105
 106

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 159

 107 /*! Wrapper function to connect to Uniterm
 108 * \param[out] errorstr Textual error message if returns null
 109 * \return Initialized connection class on success. null on failure
 110 */
 111 static MONETRA uniterm_connect(StringBuilder errorstr)
 112 {
 113 MONETRA conn;
 114 StringBuilder myerror = new StringBuilder();
 115 conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror);
 116 if (conn == null) {
 117 errorstr.setLength(0);
 118 errorstr.append("Connection to Uniterm Failed: " +
 119 myerror.toString());
 120 }
 121 return conn;
 122 }
 123
 124
 125 /*! Request a transaction from Uniterm as documented in the Monetra
 126 * Uniterm Guide. The Key/Value pair params are a combination of the
 127 * Parameters as documented in the Uniterm Guide and the Monetra Client
 128 * Interface Protocol Spec.
 129 * \param[in] uniterm_conn Initialized connection to Uniterm
 130 * as returned by uniterm_connect()
 131 * \param[in] mparams Array of key/value parameters to send to
 132 * Uniterm
 133 * \return Hashtable of string key/value pairs from response. Please refer
 134 * to the Uniterm Guide and Monetra Client Interface Protocol
 135 * specification for the applicable list based on the action being
 136 * performed. "code" and "u_errorcode" are always guaranteed to
 137 * be returned.
 138 */
 139 static Hashtable<String,String> uniterm_sendrequest(MONETRA uniterm_conn,
 140 Hashtable<String,String> mparams)
 141 {
 142 long id;
 143
 144 Hashtable response = new Hashtable<String,String>();
 145
 146 /* Request a new transaction from libmonetra */
 147 id = uniterm_conn.TransNew();
 148
 149 /* For each item in the params hashtable, add it to the transaction */
 150 for (String key : mparams.keySet()) {
 151 String value = mparams.get(key);
 152 uniterm_conn.TransKeyVal(id, key, value);
 153 }
 154
 155 /* Send the request to the Uniterm. It will not return until
 156 * a response is available, or a disconnect is detected */
 157 if (uniterm_conn.TransSend(id) == 0) {
 158 /* Disconnect detected, return an appropriate error condition!
 159 * This should really never happen though... */
 160 response.put("code", "DENY");
 161 response.put("u_errorcode", "CONN_ERROR");
 162 response.put("verbiage", "Connection to Uniterm failed:"
 163 + uniterm_conn.ConnectionError());
 164 return response;

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 160

 165 }
 166
 167 /* Save the response parameters from the Uniterm into a
 168 * HashTable as our function prototype states. */
 169 String[] keys = uniterm_conn.ResponseKeys(id);
 170 for (int i=0; i < keys.length; i++) {
 171 response.put(keys[i], uniterm_conn.ResponseParam(id, keys[i]));
 172 }
 173
 174 /* Free up some memory by purging unneeded data */
 175 uniterm_conn.DeleteTrans(id);
 176
 177 return response;
 178 }
 179
 180
 181 /*! Tell Uniterm to shutdown. Since we start it up,
 182 * we should make sure we turn it off prior to exiting otherwise
 183 * the user will be prompted with an error message stating the
 184 * Uniterm is already running on the next execution
 185 * of this application!
 186 * \param[in] uniterm_conn Initialized connection to Uniterm
 187 * as returned by uniterm_connect()
 188 */
 189 static void uniterm_shutdown(MONETRA uniterm_conn)
 190 {
 191 Hashtable mparams = new Hashtable<String,String>();
 192 mparams.put("u_action", "shutdown");
 193 uniterm_sendrequest(uniterm_conn, mparams);
 194 }
 195
 196
 197 /*! Main entry point to this application to be executed */
 198 public static void main(String[] args)
 199 {
 200 MONETRA uniterm_conn;
 201 StringBuilder errorstr = new StringBuilder();
 202 Hashtable<String,String> response;
 203 String ticket;
 204
 205 /* Step1: Launch Uniterm */
 206 uniterm_launch();
 207 System.out.println("Uniterm Launched");
 208
 209 /* Step2: Connect to Uniterm */
 210 uniterm_conn = uniterm_connect(errorstr);
 211 if (uniterm_conn == null) {
 212 System.out.println("Failure: " + errorstr.toString());
 213 return;
 214 }
 215 System.out.println("Connected to Uniterm");
 216
 217 /* Step3: Send a txnrequest to Uniterm */
 218 Hashtable<String,String> mparams = new Hashtable<String,String>();
 219 /* Append the parameters for the txnrequest */
 220 mparams.put("username", monetra_user);
 221 mparams.put("password", monetra_pass);
 222 mparams.put("u_action", "txnrequest");

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 161

 223
 224 mparams.put("u_devicetype", "ingenico_rba");
 225 mparams.put("u_device", "HID");
 226
 227 /* Append the parameters for the transaction that will also get passed
 228 * to Monetra such as the 'action', 'amount', etc. as described in the
 229 * Monetra Client Interface Protocol Specification */
 230 mparams.put("action", "sale");
 231 mparams.put("amount", "12.00");
 232 mparams.put("ordernum", "123456");
 233 mparams.put("comments", "u_txnrequest");
 234
 235 response = uniterm_sendrequest(uniterm_conn, mparams);
 236 if (!response.get("code").equalsIgnoreCase("AUTH")) {
 237 System.out.println("Transasction failed.");
 238 } else {
 239 System.out.println("Transasction SUCCESSFUL!");
 240 }
 241
 242 /* Print out all the response key/value pairs ... */
 243 for (String key : response.keySet()) {
 244 String value = response.get(key);
 245 System.out.println("\t" + key + " = " + value);
 246 }
 247
 248 /* NOTE: No real reason to exit here ... we could just keep running
 249 * Step 3 all day long as long as you keep the uniterm_conn handle.
 250 * No reason to keep disconnecting and reconnecting, or
 251 * starting/stopping the Uniterm.
 252 */
 253
 254 /* Step4: Cleanup */
 255 uniterm_shutdown(uniterm_conn);
 256
 257 /* Connections will be automatically closed when the uniterm_conn
 258 * initialized classe is closed by the destructor/garbage
 259 * collector */
 260 }
 261
 262 }
 263
 264

E.4 PHP using libmonetra

 1 <?php
 2 /* UniTerm example program in PHP
 3 *
 4 * Depends on the libmonetra PHP native API
 5 *
 6 * Implemented based on the UniTerm Guide in conjunction with the
 7 * Monetra Client Interface Protocol Specification
 8 *
 9 * Please contact support@monetra.com with any questions
 10 */
 11 error_reporting(E_ALL);
 12 require_once("libmonetra.php");

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 162

 13
 14
 15
 16 /* Uniterm Connectivity Information
 17 * NOTE: this is the default, it is possible to change, but 99%
 18 * of deployments will probably use this uniterm information
 19 * as-is
 20 */
 21 $uniterm_host = "localhost";
 22 $uniterm_port = 8123;
 23
 24 /* Authentication information
 25 * NOTE: This information corresponds with the public test server
 26 * at testbox.monetra.com:8665 */
 27 $monetra_user = "test_retail:public";
 28 $monetra_pass = "publ1ct3st";
 29
 30
 31 /* Sets the path of the Uniterm executable. Currently using
 32 * the default locations */
 33 if (strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') {
 34 /* Windows path */
 35 $uniterm_path = "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe";
 36 } else {
 37 /* Unix path */
 38 $uniterm_path = "/usr/local/uniterm/bin/uniterm";
 39 }
 40
 41
 42 /*! Function to launch Uniterm from the current process.
 43 * If we don't launch it from the current process, it won't be given
 44 * focus! (at least on Windows this is true, until the first
 45 * manual focus is performed by an end-user) */
 46 function uniterm_launch()
 47 {
 48 global $uniterm_path;
 49 if (class_exists("COM")) {
 50 /* Must be running windows */
 51 $WshShell = new COM("WScript.Shell");
 52 $oExec = $WshShell->Run('"' . $uniterm_path . '"', 10, false);
 53 } else {
 54 /* Must be on a Unix system */
 55 system("'" . $uniterm_path . "'" . " > /dev/null 2>&1 &");
 56 }
 57
 58 /* Make sure Uniterm is ready before returning,
 59 * sleep 2s */
 60 sleep(2);
 61 }
 62
 63
 64 /*! Function to connect to an endpoint which uses the standard 'monetra'
 65 * style protocol (so either Monetra itself, or Uniterm)
 66 * \param[in] host Resolvable hostname or IP address to connect to
 67 * \param[in] port Port associated with hostname to establish an SSL
 68 * connection to
 69 * \param[out] errorstr Textual error message if returns null
 70 * \return Initialized connection on success. null on failure

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 163

 71 */
 72 function uniterm_connect_host($host, $port, &$errorstr)
 73 {
 74 /* Initialize the Connection */
 75 $conn = M_InitConn();
 76
 77 $errorstr = "";
 78
 79 /* We always want to use an SSL connection to Monetra and Uniterm */
 80 M_SetSSL($conn, $host, $port);
 81
 82 /* Do not verify the SSL certificate, Monetra and Uniterm
 83 * use self-signed certificates by default which cannot be validated.
 84 * The connection is still encrypted, the endpoint just isn't strictly
 85 * validated */
 86 M_VerifySSLCert($conn, false);
 87
 88 /* This makes it so TransSend() will block until a response is
 89 * received from Monetra. Simplifies the API since we will never
 90 * have more than one outstanding transaction per connection in
 91 * this application */
 92 M_SetBlocking($conn, true);
 93
 94 /* Connect! */
 95 if (!M_Connect($conn)) {
 96 $errorstr = M_ConnectionError($conn);
 97 return null;
 98 }
 99
 100 return $conn;
 101 }
 102
 103
 104 /*! Wrapper function to connect to Uniterm
 105 * \param[out] errorstr Textual error message if returns null
 106 * \return Initialized connection on success. null on failure
 107 */
 108 function uniterm_connect(&$errorstr)
 109 {
 110 global $uniterm_host, $uniterm_port;
 111
 112 $myerror = "";
 113 $conn = uniterm_connect_host($uniterm_host, $uniterm_port, &$myerror);
 114 if ($conn == null) {
 115 $errorstr = "Connection to Uniterm Failed: " . $myerror;
 116 }
 117 return $conn;
 118 }
 119
 120
 121 /*! Request a transaction from Uniterm as documented in the Uniterm Guide.
 122 * The Key/Value pair params are a combination of the Parameters as
 123 * documented in the Uniterm Guide and the Monetra Client Interface Protocol
 124 * Spec.
 125 * \param[in] uniterm_conn Initialized connection to Uniterm as returned by
 126 * uniterm_connect()
 127 * \param[in] params Array of key/value parameters to send to Uniterm
 128 *

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 164

 129 * \return Array of string key/value pairs from response. Please refer to the
 130 * Uniterm Guide and Monetra Client Interface Protocol specification
 131 * for the applicable list based on the action being performed.
 132 * "code" and "u_errorcode" are always guaranteed to be returned.
 133 */
 134 function uniterm_sendrequest($uniterm_conn, $params)
 135 {
 136 $response = array();
 137
 138 /* Request a new transaction from libmonetra */
 139 $id = M_TransNew($uniterm_conn);
 140
 141 /* For each item in the params array, add it to the transaction */
 142 foreach ($params as $key => $value) {
 143 M_TransKeyVal($uniterm_conn, $id, $key, $value);
 144 }
 145
 146 /* Send the request to the Uniterm. It will not return until a
 147 * response is available, or a disconnect is detected */
 148 if (!M_TransSend($uniterm_conn, $id)) {
 149 /* Disconnect detected, return an appropriate error condition!
 150 * This should really never happen though... */
 151 $response["code"] = "DENY";
 152 $response["u_errorcode"] = "CONN_ERROR";
 153 $response["verbiage"] = "Connection to Uniterm failed: " .
 154 M_ConnectionError($uniterm_conn);
 155 return $response;
 156 }
 157
 158 /* Save the response parameters from the Uniterm into a HashTable
 159 * as our function prototype states. */
 160 $keys = M_ResponseKeys($uniterm_conn, $id);
 161 foreach ($keys as $value) {
 162 $response[$value] = M_ResponseParam($uniterm_conn, $id, $value);
 163 }
 164
 165 /* Free up some memory by purging unneeded data */
 166 M_DeleteTrans($uniterm_conn, $id);
 167
 168 return $response;
 169 }
 170
 171
 172 /*! Tell Uniterm to shutdown. Since we start it up,
 173 * we should make sure we turn it off prior to exiting otherwise
 174 * the user will be prompted with an error message stating the
 175 * Uniterm is already running on the next execution
 176 * of this application!
 177 * \param[in] uniterm_conn Initialized connection to Uniterm
 178 * as returned by uniterm_connect()
 179 */
 180 function uniterm_shutdown($uniterm_conn)
 181 {
 182 uniterm_sendrequest($uniterm_conn, array("u_action" => "shutdown"));
 183 }
 184
 185
 186

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 165

 187 /* CODE TO EXECUTE ... */
 188
 189 $errorstr = "";
 190
 191 /* Step1: Launch Uniterm */
 192 uniterm_launch();
 193 echo "Uniterm Launched\r\n";
 194
 195 /* Step2: Connect to Uniterm */
 196 $uniterm_conn = uniterm_connect(&$errorstr);
 197 if ($uniterm_conn == null) {
 198 echo "Failure: " . $errorstr . "\r\n";
 199 return;
 200 }
 201
 202 echo "Connected to Uniterm\r\n";
 203
 204
 205 /* Step3: Send a txnrequest to the Uniterm */
 206 $params = array();
 207
 208 /* Append the parameters for the txnrequest */
 209 $params["username"] = $monetra_user;
 210 $params["password"] = $monetra_pass;
 211 $params["u_action"] = "txnrequest";
 212 $params["u_devicetype"] = "ingenico_rba";
 213 $params["u_device"] = "HID";
 214
 215 /* Append the parameters for the transaction that will also get passed to
 216 * Monetra such as the 'action', 'amount', etc. as described in the Monetra
 217 * Client Interface Protocol Specification */
 218 $params['action'] = 'sale';
 219 $params['amount'] = '12.00';
 220 $params['ordernum'] = '123456';
 221 $params['comments'] = 'u_txnrequest';
 222
 223 $response = uniterm_sendrequest($uniterm_conn, $params);
 224 if (strcasecmp($response["code"], "AUTH") != 0) {
 225 echo "Transaction Failed.\r\n";
 226 } else {
 227 echo "Transaction SUCCESSFUL!\r\n";
 228 }
 229
 230 /* Print out all the response key/value pairs ... */
 231 foreach ($response as $key => $value) {
 232 echo "\t" . $key . " = " . $value . "\r\n";
 233 }
 234
 235 /* NOTE: No real reason to exit here ... we could just keep running
 236 * Step 3 all day long as long as you keep the uniterm_conn handle.
 237 * No reason to keep disconnecting and reconnecting, or
 238 * starting/stopping Uniterm.
 239 */
 240
 241 /* Step4: Cleanup */
 242 uniterm_shutdown($uniterm_conn);
 243
 244 /* Connections will be automatically closed when the uniterm_conn

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 166

 245 * initialized connection is closed by the destructor/garbage collector */
 246
 247 ?>
 248
 249

E.5 Microsoft VB.Net using libmonetra

 1 ' UniTerm example program in VB.Net
 2 '
 3 ' Depends on the libmonetra C# .Net native API (DLL)
 4 '
 5 ' Implemented based on the UniTerm Guide in conjunction with the
 6 ' Monetra Client Interface Protocol Specification
 7 '
 8 ' Please contact support@monetra.com with any questions
 9
 10 Option Explicit On
 11 Option Strict On
 12
 13 Imports System
 14 Imports System.Collections
 15 Imports System.Diagnostics
 16 Imports System.Threading
 17 Imports libmonetra
 18
 19 ' On unix, compile using:
 20 ' gmcs /target:library /unsafe libmonetra.cs
 21 ' vbnc2 -r:libmonetra.dll utest.vb
 22
 23 Module Module1
 24 ' Uniterm Connectivity Information
 25 ' NOTE: this is the default, it is possible to change, but 99%
 26 ' of deployments will probably use this Uniterm information
 27 ' as-is
 28 Private Const uniterm_host As String = "localhost"
 29 Private Const uniterm_port As Integer = 8123
 30
 31 ' Authentication information
 32 ' NOTE: This information corresponds with the public test server
 33 ' at testbox.monetra.com:8665
 34 Private Const monetra_user As String = "test_retail:public"
 35 Private Const monetra_pass As String = "publ1ct3st"
 36
 37 Private Function uniterm_path As String
 38 Select Case Environment.OSVersion.Platform
 39 Case PlatformID.Win32NT, PlatformID.Win32S, _
 40 PlatformID.Win32Windows, PlatformID.WinCE
 41 Return "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe"
 42 Case Else
 43 Return "/usr/local/uniterm/bin/uniterm"
 44 End Select
 45 End Function
 46
 47
 48 '! Function to launch Uniterm from the current process.
 49 ' If we don't launch it from the current process, it won't be given

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 167

 50 ' focus! (at least on Windows this is true, until the first
 51 ' manual focus is performed by an end-user)
 52 Private Sub uniterm_launch()
 53 Dim uniterm As New Process()
 54 uniterm.StartInfo.FileName = uniterm_path
 55 uniterm.StartInfo.CreateNoWindow = True
 56
 57 uniterm.Start()
 58
 59 ' Make sure Uniterm is ready before returning,
 60 ' Sleep 1000ms (1s)
 61 System.Threading.Thread.Sleep(1000)
 62 End Sub
 63
 64
 65 '! Function to connect to an endpoint which uses the standard 'monetra'
 66 ' style protocol (so either Monetra itself, or Uniterm)
 67 ' \param[in] host Resolvable hostname or IP address to connect to
 68 ' \param[in] port Port associated with hostname to establish an SSL
 69 ' connection to
 70 ' \param[out] errorstr Textual error message if returns null
 71 ' \return Initialized connection class on success. null on failure
 72 Private Function uniterm_connect_host(ByVal host As String, ByVal port _
 73 As Integer, ByRef errorstr As String) _
 74 As Monetra
 75 ' Initialize the Class
 76 Dim conn As New Monetra
 77
 78 errorstr = ""
 79
 80 ' We always want to use an SSL connection to Monetra and Uniterm
 81 conn.SetSSL(host, port)
 82
 83 ' Do not verify the SSL certificate, Monetra and Uniterm
 84 ' use self-signed certificates by default which cannot be validated.
 85 ' The connection is still encrypted, the endpoint just isn't strictly
 86 ' validated
 87 conn.VerifySSLCert(False)
 88
 89 ' This makes it so TransSend() will block until a response is
 90 ' received from Monetra. Simplifies the API since we will never
 91 ' have more than one outstanding transaction per connection in
 92 ' this application
 93 conn.SetBlocking(True)
 94
 95 ' Connect!
 96 If Not conn.Connect() Then
 97 errorstr = conn.ConnectionError()
 98 Return Nothing
 99 End If
 100
 101 Return conn
 102 End Function
 103
 104
 105 '! Wrapper function to connect to the Uniterm
 106 ' \param[out] errorstr Textual error message if returns null
 107 ' \return Initialized connection class on success. null on failure

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 168

 108 Private Function uniterm_connect(ByRef errorstr As String) As Monetra
 109 Dim conn As Monetra
 110 Dim myerror As String = ""
 111 conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror)
 112 If conn Is Nothing Then
 113 errorstr = "Connection to Uniterm Failed: " + myerror
 114 End If
 115
 116 Return conn
 117 End Function
 118
 119 ' Request a transaction from Uniterm as documented in the Uniterm Guide.
 120 ' The Key/Value pair params are a combination of the Parameters as
 121 ' documented in the Uniterm Guide and the Monetra Client Interface
 122 ' Protocol Spec.
 123 ' \param[in] uniterm_conn Initialized connection to the Uniterm
 124 ' as returned by uniterm_connect()
 125 ' \param[in] mparams Array of key/value parameters to send to Uniterm
 126 ' \return Hashtable of string key/value pairs from response. Please refer
 127 ' to the Uniterm Guide and Monetra Client Interface Protocol
 128 ' specification for the applicable list based on the action being
 129 ' performed. "code" and "u_errorcode" are always guaranteed to
 130 ' be returned.
 131 Private Function uniterm_sendrequest(ByVal uniterm_conn As Monetra, ByVal _
 132 mparams As Hashtable) As Hashtable
 133 Dim id As Integer
 134 Dim response As New Hashtable
 135
 136 ' Request a new transaction from libmonetra
 137 id = uniterm_conn.TransNew()
 138
 139 ' For each item in the params hashtable, add it to the transaction
 140 Dim kv As DictionaryEntry
 141 For Each kv In mparams
 142 uniterm_conn.TransKeyVal(id, CType(kv.Key, String), _
 143 CType(kv.Value, String))
 144 Next kv
 145
 146 ' Send the request to the Uniterm. It will not return until a
 147 ' response is available, or a disconnect is detected
 148 If Not uniterm_conn.TransSend(id) Then
 149 ' Disconnect detected, return an appropriate error condition!
 150 ' This should really never happen though...
 151 response("code") = "DENY"
 152 response("u_errorcode") = "CONN_ERROR"
 153 response("verbiage") = "Connection to Uniterm failed:" _
 154 + uniterm_conn.ConnectionError()
 155 Return response
 156 End If
 157
 158 ' Save the response parameters from Uniterm into a
 159 ' HashTable as our function prototype states. */
 160 Dim keys() As String = uniterm_conn.ResponseKeys(id)
 161 Dim i As Integer
 162 For i = 0 To keys.Length - 1
 163 response(keys(i)) = uniterm_conn.ResponseParam(id, keys(i))
 164 Next i
 165

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 169

 166 ' Free up some memory by purging unneeded data
 167 uniterm_conn.DeleteTrans(id)
 168
 169 Return response
 170 End Function
 171
 172
 173 '! Tell Uniterm to shutdown. Since we start it up,
 174 ' we should make sure we turn it off prior to exiting otherwise
 175 ' the user will be prompted with an error message stating the
 176 ' Uniterm is already running on the next execution
 177 ' of this application!
 178 ' \param[in] uniterm_conn Initialized connection to Uniterm
 179 ' as returned by uniterm_connect()
 180 Private Sub uniterm_shutdown(ByVal uniterm_conn As Monetra)
 181 Dim mparams As New Hashtable
 182
 183 mparams("u_action") = "shutdown"
 184 uniterm_sendrequest(uniterm_conn, mparams)
 185 End Sub
 186
 187 '! Main entry point to this application to be executed
 188 Public Sub Main()
 189 Dim uniterm_conn As Monetra
 190 Dim errorstr As String = ""
 191 Dim response As Hashtable
 192 Dim ticket As String
 193
 194 ' Step1: Launch Uniterm
 195 uniterm_launch()
 196 Console.WriteLine("Uniterm Launched")
 197
 198 ' Step2: Connect to Uniterm
 199 uniterm_conn = uniterm_connect(errorstr)
 200 If uniterm_conn Is Nothing Then
 201 Console.WriteLine("Failure: " + errorstr)
 202 Return
 203 End If
 204 Console.WriteLine("Connected to Uniterm")
 205
 206 ' Step3: Send a txnrequest to Uniterm
 207 Dim mparams As New Hashtable
 208 ' Append the parameters for the ticket request as per the Monetra
 209 ' Uniterm Guide
 210 mparams("username") = monetra_user
 211 mparams("password") = monetra_pass
 212 mparams("u_action") = "txnrequest"
 213 mparams("u_devicetype") = "ingenico_rba"
 214 mparams("u_device") = "HID"
 215
 216 ' Append the parameters for the transaction that will also get passed
 217 ' to Monetra such as the 'action', 'amount', etc. as described in the
 218 ' Monetra Client Interface Protocol Specification
 219 mparams("action") = "sale"
 220 mparams("amount") = "12.00"
 221 mparams("ordernum") = "123456"
 222 mparams("comments") = "u_txnrequest"
 223

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 170

 224 response = uniterm_sendrequest(uniterm_conn, mparams)
 225 If StrComp(CType(response("code"), String), "AUTH", _
 226 vbTextCompare) <> 0 Then
 227 Console.WriteLine("Transaction failed.")
 228 Else
 229 Console.WriteLine("Transaction SUCCESSFUL!")
 230 End If
 231
 232 ' Print out all the response key/value pairs ...
 233 Dim kv As DictionaryEntry
 234 For Each kv In response
 235 Console.WriteLine(" " + CType(kv.Key, String) + " = " + _
 236 CType(kv.Value, String))
 237 Next kv
 238
 239 ' NOTE: No real reason to exit here ... we could just keep running
 240 ' Step 3 all day long as long as you keep the uniterm_conn handle.
 241 ' No reason to keep disconnecting and reconnecting, or
 242 ' starting/stopping Uniterm.
 243
 244 ' Step4: Cleanup
 245 uniterm_shutdown(uniterm_conn)
 246
 247 ' Connections will be automatically closed when the uniterm_conn
 248 ' initialized class is closed by the destructor/garbage
 249 ' collector
 250 End Sub
 251
 252 End Module
 253
 254

E.6 Microsoft VBScript using XML and MSXML2

 1 ' UniTerm example program in VBScript
 2 '
 3 ' Depends on the MSXML, and Microsoft Scripting Runtime
 4 '
 5 ' Implemented based on the UniTerm Guide in conjunction with the
 6 ' Monetra Client Interface Protocol Specification
 7 '
 8 ' Please contact support@monetra.com with any questions
 9
 10 Option Explicit
 11
 12 ' Monetra Connectivity Information
 13 Dim monetra_user
 14 Dim monetra_pass
 15
 16 ' Uniterm Connectivity Information
 17 Dim uniterm_host
 18 Dim uniterm_port
 19 Dim uniterm_path
 20
 21
 22 '! Function to launch Uniterm from the current process.
 23 ' If we don't launch it from the current process, it won't be given

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 171

 24 ' focus! (at least on Windows this is true, until the first
 25 ' manual focus is performed by an end-user)
 26 Sub uniterm_launch()
 27 Dim objShell
 28 Dim res
 29 Set objShell = CreateObject("Wscript.Shell")
 30 res = objShell.Run("""" & uniterm_path & """", 10, FALSE)
 31
 32 ' Make sure Uniterm is ready before returning,
 33 ' Sleep 1000ms (1s)
 34 WScript.Sleep 1000
 35 End Sub
 36
 37
 38 '! Function to POST and XML message to a Monetra-like entity
 39 ' (Monetra or the Uniterm) via HTTPS. It will return
 40 ' the key/value pairs from the XML response
 41 '\param[in] host Host to connect to
 42 '\param[in] port Port to connect to (via SSL/HTTPS)
 43 '\param[in] xml String-form XML to post
 44 '\param[out] errorstr If returning False, the error message, typically comms
 45 ' error
 46 '\param[out] myresponse Dictionary of string key/value pairs from the response.
 47 '\return True on successful communication, False if communication failed.
 48 ' Note: True doesn't mean the transaction itself was successful.
 49 Function uniterm_https_post(ByVal host, ByVal port, ByVal xml, ByRef errorstr, _
 50 ByRef myresponse)
 51 Dim xmlhttp
 52 Dim xmldoc
 53
 54 Set xmlhttp = CreateObject("MSXML2.ServerXMLHTTP")
 55
 56 xmlhttp.open "POST", "https://" & host & ":" & port, False
 57 xmlhttp.setOption 2, 13056
 58 ' Set Timeouts (in milliseconds)
 59 ' DNS: 5s, Connect: 5s, Send: 30s, Receive: 120s
 60 xmlhttp.setTimeouts 5000, 5000, 30000, 120000
 61 xmlhttp.setRequestHeader "Content-Type", "text/xml"
 62
 63 On Error Resume Next
 64 xmlhttp.send xml
 65
 66 If Not Err.Number = 0 Then
 67 errorstr = "HTTPS POST Failed to https://" & host & ":" & port & _
 68 ": " & Err.Description
 69 uniterm_https_post = False
 70 Exit Function
 71 End If
 72
 73 Set xmldoc = CreateObject("Microsoft.XMLDOM")
 74
 75 xmldoc.async = "false"
 76 xmldoc.loadxml(xmlhttp.responseText)
 77
 78 Dim Trans
 79 Set Trans = xmldoc.documentElement.selectSingleNode("Resp").childNodes
 80
 81 Dim kv

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 172

 82 For Each kv In Trans
 83 myresponse(kv.nodeName) = kv.text
 84 Next
 85
 86 uniterm_https_post = True
 87 End Function
 88
 89
 90 '! Request a transaction from Uniterm as documented in the Uniterm Guide.
 91 ' The Key/Value pair params are a combination of the Parameters as documented
 92 ' the Uniterm Guide and the Monetra Client Interface Protocol Spec.
 93 ' \param[in] mparams Dictionary of key/value parameters to send to the
 94 ' Uniterm
 95 ' \param[out] errorstr If returning False, the error message, typically comms
 96 ' error
 97 ' \param[out] myresponse Dictionary of string key/value pairs from response.
 98 ' Please refer to the Uniterm Guide and Monetra Client
 99 ' Interface Protocol specification for the applicable
 100 ' list based on the action being performed. "code" and
 101 ' "u_errorcode" are always guaranteed to be returned.
 102 ' \return True on successful communication, False if communication failed.
 103 ' Note: True doesn't mean the transaction itself was successful.
 104 Function uniterm_sendrequest(ByVal mparams, ByRef errorstr, ByRef myresponse)
 105 Dim xml
 106
 107 xml = "<MonetraTrans><Trans identifier='1'>"
 108
 109 ' For each item in the params dictionary, add it to the transaction
 110 Dim key
 111 For Each key In mparams
 112 xml = xml & "<" & key & ">" & mparams(key) & "</" & key & ">"
 113 Next
 114
 115 xml = xml & "</Trans></MonetraTrans>"
 116
 117 uniterm_sendrequest = uniterm_https_post(uniterm_host, uniterm_port, xml, _
 118 errorstr, myresponse)
 119 End Function
 120
 121
 122 '! Tell Uniterm to shutdown. Since we start it up,
 123 ' we should make sure we turn it off prior to exiting otherwise
 124 ' the user will be prompted with an error message stating the
 125 ' Uniterm is already running on the next execution
 126 ' of this application!
 127 Sub uniterm_shutdown()
 128 Dim myresponse
 129 Dim errorstr
 130 Dim mparams
 131
 132 Set mparams = CreateObject("Scripting.Dictionary")
 133 mparams("u_action") = "shutdown"
 134
 135 uniterm_sendrequest mparams, errorstr, myresponse
 136 ' No need for error checking in this function as we don't
 137 ' care if this fails
 138 End Sub
 139

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 173

 140
 141 '! Main entry point to this application to be executed
 142
 143 ' Uniterm Connectivity Information
 144 ' NOTE: this is the default, it is possible to change, but 99%
 145 ' of deployments will probably use this Uniterm information
 146 ' as-is
 147 uniterm_host = "localhost"
 148 uniterm_port = 8123
 149 uniterm_path = "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe"
 150
 151 ' Authentication information
 152 ' NOTE: This information corresponds with the public test server
 153 ' at testbox.monetra.com:8665
 154 monetra_user = "test_retail:public"
 155 monetra_pass = "publ1ct3st"
 156
 157
 158 Dim errorstr
 159 Dim mparams
 160 Dim myresp
 161 Dim msg
 162
 163 errorstr = ""
 164
 165 ' Step1: Launch Uniterm
 166 uniterm_launch
 167 MsgBox("Uniterm Launched")
 168
 169
 170 ' Step2: Send txnrequest to Uniterm
 171
 172 Set myresp = CreateObject("Scripting.Dictionary")
 173 Set mparams = CreateObject("Scripting.Dictionary")
 174 ' Append the parameters for the txnrequest
 175 mparams("username") = monetra_user
 176 mparams("password") = monetra_pass
 177 mparams("u_action") = "txnrequest"
 178 mparams("u_devicetype") = "ingenico_rba"
 179 mparams("u_device") = "HID"
 180
 181 ' Append the parameters for the transaction that will also get passed
 182 ' to Monetra such as the 'action', 'amount', etc. as described in the
 183 ' Monetra Client Interface Protocol Specification
 184 mparams("action") = "sale"
 185 mparams("amount") = "12.00"
 186 mparams("ordernum") = "123456"
 187 mparams("comments") = "u_txnrequest"
 188
 189 If Not uniterm_sendrequest(mparams, errorstr, myresp) Then
 190 MsgBox errorstr
 191 WScript.Quit 1
 192 End If
 193
 194 If StrComp(myresp("code"), "AUTH", vbTextCompare) <> 0 Then
 195 msg = "Transaction failed." & vbNewLine
 196 Else
 197 msg = "Transaction SUCCESSFUL!" & vbNewLine

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 174

 198 End If
 199
 200 ' Print out all the response key/value pairs ...
 201 Dim key
 202 For Each key In myresp
 203 msg = msg & " " & key & " = " & myresp(key) & vbNewLine
 204 Next
 205
 206 MsgBox (msg)
 207
 208
 209 ' NOTE: No real reason to exit here ... we could just keep running
 210 ' Step 2 all day long. No reason to keep starting/stopping the
 211 ' Uniterm.
 212
 213 ' Step3: Cleanup
 214 uniterm_shutdown
 215
 216
 217
 218
 219

E.7 Microsoft Visual Basic 6 using libmonetra

 1 Attribute VB_Name = "Module1"
 2 ' UniTerm example program in VB6
 3 '
 4 ' Depends on the libmonetra C# .Net native API (DLL) (has COM hooks)
 5 '
 6 ' Must add reference to libmonetra and Microsoft Scripting Runtime
 7 '
 8 ' Implemented based on the UniTerm Guide in conjunction with the
 9 ' Monetra Client Interface Protocol Specification
 10 '
 11 ' Please contact support@monetra.com with any questions
 12
 13 Option Explicit
 14
 15 ' MonetraInformation
 16 Dim monetra_user As String
 17 Dim monetra_pass As String
 18
 19 ' Uniterm Connectivity Information
 20 Dim uniterm_host As String
 21 Dim uniterm_port As Integer
 22 Dim uniterm_path As String
 23
 24 Private Declare Sub Sleep Lib "kernel32.dll" (ByVal dwMilliseconds As Long)
 25
 26 '! Function to launch Uniterm from the current process.
 27 ' If we don't launch it from the current process, it won't be given
 28 ' focus! (at least on Windows this is true, until the first
 29 ' manual focus is performed by an end-user)
 30 Sub uniterm_launch()
 31 Dim id As Double
 32 id = Shell("""" & uniterm_path & """", vbNormalFocus)

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 175

 33
 34 ' Make sure Uniterm is ready before returning,
 35 ' Sleep 1000ms (1s)
 36 Sleep (1000)
 37 End Sub
 38
 39
 40 '! Function to connect to an endpoint which uses the standard 'monetra'
 41 ' style protocol (so either Monetra itself, or Uniterm)
 42 ' \param[in] host Resolvable hostname or IP address to connect to
 43 ' \param[in] port Port associated with hostname to establish an SSL
 44 ' connection to
 45 ' \param[out] errorstr Textual error message if returns null
 46 ' \return Initialized connection class on success. null on failure
 47 Function uniterm_connect_host(ByVal host As String, ByVal port As Integer, _
 48 ByRef errorstr As String) As IMonetra
 49 ' Initialize the Class
 50 Dim conn As IMonetra
 51 Set conn = New Monetra
 52
 53 errorstr = ""
 54
 55 ' We always want to use an SSL connection to Monetra and Uniterm
 56 conn.SetSSL host, port
 57
 58 ' Do not verify the SSL certificate, Monetra and Uniterm
 59 ' use self-signed certificates by default which cannot be validated.
 60 ' The connection is still encrypted, the endpoint just isn't strictly
 61 ' validated
 62 conn.VerifySSLCert False
 63
 64 ' This makes it so TransSend() will block until a response is
 65 ' received from Monetra. Simplifies the API since we will never
 66 ' have more than one outstanding transaction per connection in
 67 ' this application
 68 conn.SetBlocking True
 69
 70 ' Connect!
 71 If Not conn.Connect() Then
 72 errorstr = conn.ConnectionError()
 73 Set uniterm_connect_host = Nothing
 74 Exit Function
 75 End If
 76
 77 Set uniterm_connect_host = conn
 78 End Function
 79
 80
 81 '! Wrapper function to connect to Uniterm
 82 ' \param[out] errorstr Textual error message if returns null
 83 ' \return Initialized connection class on success. null on failure
 84 Function uniterm_connect(ByRef errorstr As String) As IMonetra
 85 Dim conn As IMonetra
 86 Dim myerror As String
 87
 88 myerror = ""
 89 Set conn = uniterm_connect_host(uniterm_host, uniterm_port, myerror)
 90 If conn Is Nothing Then

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 176

 91 errorstr = "Connection to Uniterm Failed: " & myerror
 92 End If
 93 Set uniterm_connect = conn
 94 End Function
 95
 96
 97 ' Request a transaction from Uniterm as documented in the UniTerm
 98 ' Guide. The Key/Value pair params are a combination of the Parameters as
 99 ' Uniterm Guide and the Monetra Client Interface Protocol Spec.
 100 ' \param[in] uniterm_conn Initialized connection to Unitermas returned by
 101 ' connect_to_uniterm()
 102 ' \param[in] mparams Dictionary of key/value parameters to send to
 103 ' Uniterm
 104 ' \return Dictionary of string key/value pairs from response. Please refer
 105 ' to the Uniterm Guide and Monetra Client Interface Protocol
 106 ' specification for the applicable list based on the action being
 107 ' performed. "code" and "u_errorcode" are always guaranteed to
 108 ' be returned.
 109 Function uniterm_sendrequest(ByVal uniterm_conn As IMonetra, _
 110 ByVal mparams As Dictionary) _
 111 As Dictionary
 112 Dim id As Integer
 113 Dim myresponse As New Dictionary
 114
 115 ' Request a new transaction from libmonetra
 116 id = uniterm_conn.TransNew()
 117
 118 ' For each item in the params dictionary, add it to the transaction
 119 Dim key
 120 For Each key In mparams
 121 uniterm_conn.TransKeyVal id, key, mparams(key)
 122 Next key
 123
 124 ' Send the request to the Uniterm. It will not return until a
 125 ' response is available, or a disconnect is detected
 126 If Not uniterm_conn.TransSend(id) Then
 127 ' Disconnect detected, return an appropriate error condition!
 128 ' This should really never happen though...
 129 myresponse("code") = "DENY"
 130 myresponse("u_errorcode") = "CONN_ERROR"
 131 myresponse("verbiage") = "Connection to Uniterm failed: " _
 132 & uniterm_conn.ConnectionError()
 133 Set uniterm_sendrequest = myresponse
 134 Exit Function
 135 End If
 136
 137 ' Save the response parameters from the Uniterm into a HashTable
 138 ' as our function prototype states.
 139 Dim keys() As String
 140 keys = uniterm_conn.ResponseKeys(id)
 141 Dim i As Integer
 142 For i = LBound(keys) To UBound(keys)
 143 myresponse(keys(i)) = uniterm_conn.ResponseParam(id, keys(i))
 144 Next i
 145
 146 ' Free up some memory by purging unneeded data
 147 uniterm_conn.DeleteTrans (id)
 148

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 177

 149 Set uniterm_sendrequest = myresponse
 150 End Function
 151
 152
 153 '! Tell Uniterm to shutdown. Since we start it up, we should make sure we
 154 ' turn it off prior to exiting otherwise the user will be prompted with an
 155 ' error message stating Uniterm is already running on the next execution
 156 ' of this application!
 157 ' \param[in] uniterm_conn Initialized connection to Uniterm as returned by
 158 ' connect_to_uniterm()
 159 Sub uniterm_shutdown(ByVal uniterm_conn As IMonetra)
 160 Dim mparams As New Dictionary
 161
 162 mparams("u_action") = "shutdown"
 163 uniterm_sendrequest uniterm_conn, mparams
 164 End Sub
 165
 166
 167 '! Main entry point to this application to be executed
 168 Sub Main()
 169 ' Uniterm Connectivity Information
 170 ' NOTE: this is the default, it is possible to change, but 99%
 171 ' of deployments will probably use this Uniterm information
 172 ' as-is
 173 uniterm_host = "localhost"
 174 uniterm_port = 8123
 175 uniterm_path = "C:\\Program Files\\Main Street Softworks\\UniTerm\\uniterm.exe"
 176
 177 ' Authentication information
 178 ' NOTE: This information corresponds with the public test server
 179 ' at testbox.monetra.com:8665
 180 monetra_user = "test_retail:public"
 181 monetra_pass = "publ1ct3st"
 182
 183 Dim uniterm_conn As IMonetra
 184 Dim errorstr As String
 185 Dim myresp As Dictionary
 186 Dim msg As String
 187
 188 errorstr = ""
 189
 190 ' Step1: Launch Uniterm
 191 uniterm_launch
 192 MsgBox ("Uniterm Launched")
 193
 194 ' Step2: Connect to Uniterm
 195 Set uniterm_conn = uniterm_connect(errorstr)
 196 If uniterm_conn Is Nothing Then
 197 MsgBox ("Failure: " & errorstr)
 198 Exit Sub
 199 End If
 200
 201 MsgBox ("Connected to the Uniterm")
 202
 203 ' Step3: Send a txnrequest to Uniterm
 204 Dim mparams As New Dictionary
 205 ' Append the parameters for the ticket request as per the Uniterm Guide
 206 mparams("username") = monetra_user

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 178

 207 mparams("password") = monetra_pass
 208 mparams("u_action") = "txnrequest"
 209 mparams("u_devicetype") = "ingenico_rba"
 210 mparams("u_device") = "HID"
 211
 212 ' Append the parameters for the transaction that will also get passed
 213 ' to Monetra such as the 'action', 'amount', etc. as described in the
 214 ' Monetra Client Interface Protocol Specification
 215 mparams("action") = "sale"
 216 mparams("amount") = "12.00"
 217 mparams("ordernum") = "123456"
 218 mparams("comments") = "u_txnrequest"
 219
 220 Set myresp = uniterm_sendrequest(uniterm_conn, mparams)
 221 If StrComp(myresp("code"), "AUTH", vbTextCompare) <> 0 Then
 222 msg = "Transaction failed." & vbNewLine
 223 Else
 224 msg = "Transaction SUCCESSFUL!" & vbNewLine
 225 End If
 226
 227 ' Print out all the response key/value pairs ...
 228 Dim key
 229 For Each key In myresp
 230 msg = msg & " " & key & " = " & myresp(key) & vbNewLine
 231 Next key
 232 MsgBox (msg)
 233
 234 ' NOTE: No real reason to exit here ... we could just keep running
 235 ' Step 3 all day long as long as you keep the uniterm_conn handle.
 236 ' No reason to keep disconnecting and reconnecting, or
 237 ' starting/stopping Uniterm.
 238
 239 ' Step4: Cleanup
 240 uniterm_shutdown uniterm_conn
 241
 242 ' Connections will be automatically closed when the uniterm_conn initialized
 243 ' class is cleaned up by the destructor/garbage collector
 244 End Sub
 245
 246
 247

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 179

F PCI Security and Implementation

The below details the various security and PCI requirements and how deployments may
be impacted. Integrators and distributors should read this section prior to any production
deployments. UniTerm is designed to be compliant with all PCI PA-DSS requirements and
cannot be configured to be non-compliant.

UniTerm depends on an instance of Monetra v8.y.z being accessible. Monetra may run on
customer-hosted equipment or be provided as a service or gateway via a third party.

Note: Please use this section along with the official PCI DSS v3.2 specification available at
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2.pdf

TOPIC DISCUSSION

Delete sensitive
authentication data stored by
previous payment application
versions.

UniTerm has never stored any sensitive authentication data in
a non-secured or non-approved manner.

Delete any sensitive
authentication data (pre-
authorization) gathered as a
result of troubleshooting the
payment application.

UniTerm does not have the ability to store sensitive
authentication data for troubleshooting purposes.

Securely delete cardholder
data after customer-defined
retention period.

UniTerm never stores cardholder data after authorization
and prior to authorization is stored as per Section 7.1, and
Section 7.3.

Mask PAN when displayed
so only personnel with a
business need can see the full
PAN.

UniTerm mandates the use of users with the obscured flag,
therefore it is not possible that the full PAN can ever be
returned. There is no ability to configure UniTerm to return
the PAN.

Render PAN unreadable
anywhere it is stored
(including data on portable
digital media, backup media,
and in logs).

Sensitive cardholder data is always unreadable as per
Section 7.1 and Section 7.2, this is always true, there is no
configuration option that controls this behavior.

Protect keys used to secure
cardholder data against
disclosure and misuse.

UniTerm does not have the keys to decrypt any stored
cardholder data as per Section 7.1

Implement key-management
processes and procedures for
cryptographic keys used for
encryption of cardholder data.

Only ephemeral keys are used to store cardholder data,
and those are protected by RSA Public keys rotated ever
10-12 days as per Section 7.1. There is no configuration
option to control this behavior, it is always implemented as
documented.

Implement secure key-
management functions.

UniTerm requests RSA public keys from Monetra, Monetra
handles management of the RSA private keys in its

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2.pdf

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 180

validated CardShield subsystem. See Section 7.1, there is
no configuration option to control this behavior, it is always
implemented as documented.

Provide a mechanism
to render irretrievable
cryptographic key material
or cryptograms stored by the
payment application.

UniTerm never has the keys to decrypt sensitive cardholder
data as per Section 7.1. There is no configuration option
to control this behavior, it is always implemented as
documented.

Use unique user IDs and
secure authentication for
administrative access and
access to cardholder data.

UniTerm does not provide or facilitate administrative access,
all access controls are provided by the remote Monetra
instance.

Use unique user IDs and
secure authentication for
access to PCs, servers, and
databases with payment
applications.

UniTerm does not provide or facilitate administrative or
remote access.

UniTerm utilizes the validated Monetra authentication
subsystem for access to UniTerm and its connected devices in
conjunction with the policies as described in Section 7.1

All access controls to cardholder data are provided by the
remote Monetra instance.

Note: It is the integrator's responsibility to ensure
unique user names and secure authentication are
used to access any PCs, servers, and databases
with payment applications and/or cardholder data.
This is requirement is external to UniTerm and not
something that can be provided by UniTerm on
behalf of the merchant or integrator.

Implement automated audit
trails.

Audit trails are provided by both logging on the Monetra
side of all end-user transactions as well as UniTerm's built-in
logging mechanisms as described in Section 7.2

Facilitate centralized logging. Centralized logging is facilitated by the syslog subsystem
provided by UniTerm as described in Section 7.2

Implement and communicate
application versioning
methodology.

Please see the Versioning section.

Securely implement wireless
technology.

UniTerm is not designed facilitate the use of wireless
technologies, however merchants may deploy UniTerm
in environments where wireless technologies are in use.
UniTerm always uses secure communications channels
protected by TLS v1.2 or higher, which are designed for use in
public/untrusted networks, to protect sensitive cardholder data
while in transit so requiring additional security mechanisms on
any wireless technology in use is not a requirement as per PCI,
however it is always a recommended best practice.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 181

Secure transmissions of
cardholder data over wireless
networks.

UniTerm is not designed facilitate the use of wireless
technologies, however merchants may deploy UniTerm
in environments where wireless technologies are in use.
UniTerm always uses secure communications channels
protected by TLS v1.2 or higher, which are designed for use in
public/untrusted networks, to protect sensitive cardholder data
while in transit so requiring additional security mechanisms on
any wireless technology in use is not a requirement as per PCI,
however it is always a recommended best practice.

Provide instructions for
secure use of wireless
technology.

UniTerm is not designed facilitate the use of wireless
technologies, however merchants may deploy UniTerm
in environments where wireless technologies are in use.
UniTerm always uses secure communications channels
protected by TLS v1.2 or higher, which are designed for use in
public/untrusted networks, to protect sensitive cardholder data
while in transit so requiring additional security mechanisms on
any wireless technology in use is not a requirement as per PCI,
however it is always a recommended best practice. Integrators
should ensure they secure any wireless technologies in use are
in compliance with the requirements in PA-DSS Requirement
6.3 for other applications that may not deploy UniTerm's
secure practices.

Use only necessary and
secure services, protocols,
components and dependent
software and hardware,
including those provided by
third parties.

UniTerm communicates only via TLS using proprietary
protocols to a Monetra server (hosted or customer-owned)
across an intranet or the Internet. A customer may choose
to deploy UniTerm with one or more hardware card entry
devices or terminals directly attached to the System via USB,
Serial, BlueTooth, or Ethernet

It is the integrator's responsibility to ensure only necessary and
secure protocols, services, etc., are used on the system.

Store cardholder data only on
servers not connected to the
Internet

Cardholder data is only stored within UniTerm prior to
authorization with no ability to retrieve it in plain-text form as
per Section 7.1

Implement two-factor
authentication for all remote
access to payment application
that originates from outside
the customer environment.

UniTerm does not facilitate remote access, therefore
integrators or merchants choosing to provide an external
means of remote access must ensure that all remote access
originating from outside the customer's network to a payment
application must use two-factor authentication. Two-factor
means two separate types of authentication, a username and
password is one factor, a second password would not be
considered a second factor, it should instead be something
external such as a token.

Securely deliver remote
payment application updates.

Integrators or merchants must securely deliver updates
to UniTerm in compliance with the Deployment section.
Deployments must be done in accordance with the PCI PA-
DSS requirement 10.3.

Copyright © 2021 Monetra Technologies, LLC | UniTerm Integration and Deployment Guide 182

Securely implement remote-
access software.

Monetra Technologies will never reach out to a remote
customer network. If an integrator or merchant chooses to
support remote access for management they must do so in
compliance with PCI DSS requirements, specifically section
8.

Secure transmissions of
cardholder data over public
networks.

UniTerm communicates only via TLS to Monetra using
proprietary protocols.

UniTerm communicates using the PCI DSS required
protocols and cipher suites automatically (TLSv1.2
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384). No
configuration is required of UniTerm to comply, nor is it
possible to reconfigure UniTerm to a less secure protocol or
cipher suite. Future versions may implement new protocols
and cipher suites as they become available.

UniTerm, by default performs full validation of the remote
Monetra's certificate. This must not be disabled if connecting
to Monetra over the public internet as per Section 4.2.1's'
ssl_cert_validate.

Encrypt cardholder data sent
over end-user messaging
technologies.

UniTerm does not facilitate or support the use of end-user
messaging technologies.

Encrypt non-console
administrative access.

UniTerm does not provide or facilitate administrative access.

	UniTerm Integration and Deployment Guide
	Table of Contents
	1 Revision History
	2 UniTerm System
	2.1 Overview
	2.2 UniTerm Architecture
	2.3 Design Decisions
	2.4 Store and Forward/Stand-In processing
	2.4.1 Stand-In eligibility rules

	2.5 ChipTab® - EMV Bar Tab support
	2.5.1 ChipTab eligibility rules

	3 UniTerm Integration and Deployment Overview
	3.1 Deployment
	3.2 Versioning
	3.2.1 Version Scheme
	3.2.2 Wildcard Versioning

	3.3 Licensing
	3.3.1 Registration
	3.3.2 Device Definition
	3.3.3 Management

	3.4 Starting UniTerm
	3.4.1 Command Line Options

	3.5 Multiple Instances
	3.6 Swapping Devices
	3.7 Communication to UniTerm from Integration
	3.7.1 Network Communication
	3.7.2 Android Service Communication
	3.7.3 Apple iOS
	3.7.3.1 Framework
	3.7.3.1.1 APIs

	3.7.3.2 URL Schemes
	3.7.3.2.1 URL Scheme messaging format

	3.8 Shutting Down UniTerm
	3.9 User Setup Permissions and Requirements
	3.10 Linux OS device access permissions
	3.10.1 HID devices
	3.10.2 Serial devices

	3.11 Android - Embedding
	3.11.1 HID Support
	3.11.1.1 Permission via Manifest
	3.11.1.2 Permission via Request Dialog

	3.12 Deploying UniTerm in a public-facing environment

	4 Configuration
	4.1 Configuration Files
	4.2 Configuration Parameters
	4.2.1 Section: [payment_server]
	4.2.2 Section: [uniterm]
	4.2.2.1 Operating Parameters
	4.2.2.2 Feature Parameters

	4.2.3 Section: [device_server]
	4.2.4 Section: [db]
	4.2.5 Section: [logging]
	4.2.6 Section: [tab]
	4.2.7 Section: [standin]
	4.2.8 Section: [blacklist]

	5 UniTerm Protocol
	5.1 Overview
	5.2 UniTerm Request Parameters
	5.2.1 UniTerm Actions (u_action)
	5.2.2 System Information Actions (u_sysinfo)
	5.2.3 Stand In Actions (u_standin)
	5.2.4 ChipTab Actions (u_tab)
	5.2.5 Interchange/Rate Qualification Requirements
	5.2.6 Shared Secret/HMAC handling

	5.3 UniTerm Response Parameters
	5.4 UniTerm Error Codes
	5.5 UniTerm Status Codes
	5.6 UniTerm Representment Codes
	5.7 Tip Prompting
	5.8 Cash Back Prompting
	5.9 EBT Processing
	5.10 QuickChip
	5.11 Pay at the Table
	5.12 Parking: Card-In/Card-Out Entry and Exit Gates
	5.12.1 Considerations

	5.13 Signature Capture

	6 EMV transactions with UniTerm
	6.1 Transaction Flow and Prompting
	6.1.1 Swipe prompts to insert
	6.1.2 Tap prompts to insert
	6.1.3 Insert prompts to swipe
	6.1.4 PIN required on Credit Cards
	6.1.5 Signature not requested
	6.1.6 Tap transaction run as MSR on chip card, no insert requested
	6.1.7 Immediate decline without contacting the processor

	6.2 Common questions
	6.2.1 How do I add a gratuity/tip to a transaction?
	6.2.2 What industries are certified for EMV?

	7 Storage, Key Management, and Logging
	7.1 Database Storage, Security, and Key Management
	7.2 Logging
	7.3 External Data Storage

	8 UniTerm Protocol Examples
	8.1 EMV Transaction [device load]
	8.1.1 UniTerm Request Data
	8.1.2 UniTerm Response Data

	8.2 EMV Transaction [Interac]
	8.2.1 UniTerm Request Data
	8.2.2 UniTerm Response Data

	8.3 Transaction Request with EBT Food Stamp optional
	8.3.1 UniTerm Request Data
	8.3.2 GUI output
	8.3.3 UniTerm Response Data

	9 UniTerm Test Application
	10 UniTerm Code Examples
	11 UniTerm Hardware Devices (Point of Interaction Devices)
	11.1 Supported POI Devices
	11.1.1 Ingenico RBA and UPP information
	11.1.1.1 RBA firmware versions and devices
	11.1.1.2 UPP firmware versions and devices
	11.1.1.3 Communication Methods
	11.1.1.4 Device configuration
	11.1.1.4.1 RBA Contactless Support

	11.1.1.5 RBA Hardware Information
	11.1.1.6 Forms and Images
	11.1.1.7 First Data TransArmor RSA Encryption
	11.1.1.8 Updating RBA or UPP firmware with UniTerm
	11.1.1.9 SSL Client (Device -> UniTerm) Mode of operation

	11.1.2 Ingenico TCPX information
	11.1.2.1 Communication Methods

	11.1.3 BBPos family information
	11.1.3.1 Chipper 2X BT/Anywhere Commerce Walker C2X BT
	11.1.3.1.1 Communication Methods

	11.1.3.2 WisePad 3S
	11.1.3.2.1 Communication Methods

	11.1.4 ID Tech Augusta and Spectrum Pro (NGA)
	11.1.5 ID Tech VP5300 information
	11.1.5.1 Communication Methods
	11.1.5.2 Updating the Device
	11.1.5.3 Remote Key Injection

	11.1.6 Equinox Luxe information
	11.1.6.1 Communication Methods
	11.1.6.2 Ordering Devices
	11.1.6.2.1 Key Slots

	11.1.6.3 Point-to-Point Encryption (P2PE)
	11.1.6.4 Device Configuration
	11.1.6.4.1 Wired Communication
	11.1.6.4.2 Wireless Communication

	11.1.6.5 Custom Idle Images
	11.1.6.6 Updating Packages
	11.1.6.7 Remote Key Injection

	11.2 Obtaining Devices
	11.2.1 Where to source devices with appropriate loads and keys

	12 Certifications and Device Configurations
	12.1 Certification List
	12.2 Configuration Definitions

	13 UniTerm supported peripherals
	A UniTerm Device Loading
	B HMAC Algorithm
	C Pre-formatted Receipt Processing
	C.1 Request parameters
	C.2 Supported Languages
	C.3 Response Data
	C.3.1 Plain Text format
	C.3.2 HTML format
	C.3.2.1 Classes
	C.3.2.2 IDs
	C.3.2.3 Simple CSS styling example
	C.3.2.4 Complex CSS styling example

	C.3.3 XML and JSON format

	D EMV Receipt Requirements (for Manual Receipt formatting)
	D.1 Receipt content
	D.1.1 Base receipt content

	D.2 Receipt Data Returned by UniTerm
	D.3 Receipt Data NOT Returned by UniTerm
	D.4 Signature Line Requirements
	D.5 Merchant vs Customer Copy
	D.6 Moneris Requirements
	D.7 Receipt Examples
	D.7.1 EMV Insert, Signature Required
	D.7.1.1 UniTerm Response Data
	D.7.1.2 Example Receipt

	D.7.2 EMV Insert, PIN Verified
	D.7.2.1 UniTerm Response Data
	D.7.2.2 Example Receipt

	D.7.3 EMV Insert, No CVM
	D.7.3.1 UniTerm Response Data
	D.7.3.2 Example Receipt

	D.7.4 EMV Insert, Card Decline
	D.7.4.1 UniTerm Response Data
	D.7.4.2 Example Receipt

	D.7.5 EMV Insert, Card Removed (Decline)
	D.7.5.1 UniTerm Response Data
	D.7.5.2 Example Receipt

	D.7.6 EMV Insert, Interac
	D.7.6.1 UniTerm Response Data
	D.7.6.2 Example Receipt

	D.7.7 EMV Contactless, Interac Flash Decline
	D.7.7.1 UniTerm Response Data
	D.7.7.2 Example Receipt

	D.7.8 EMV Contactless, Decline
	D.7.8.1 UniTerm Response Data
	D.7.8.2 Example Receipt

	E UniTerm Code Examples
	E.1 Microsoft C# using libmonetra
	E.2 Microsoft C# using XML and HttpWebRequest
	E.3 Java using libmonetra
	E.4 PHP using libmonetra
	E.5 Microsoft VB.Net using libmonetra
	E.6 Microsoft VBScript using XML and MSXML2
	E.7 Microsoft Visual Basic 6 using libmonetra

	F PCI Security and Implementation

